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PROPELTANT F'LOW METER 

for 

ION ROCKET SYS'IEMS 

by: Keith M. Montganery 

ABSTRACT 

3,3f 97  
A heated f i n  anernoueter vspor flow meter was designed t o  operate over a flow 

range of 10 

A cal ibrat ion system wae developed and consisted of a boi ler ,  superheater, 

metering or i f ice ,  &superheater, and condenser. 

configuretion was accanplished w i t h  the aid of a d i g i t a l  computer. 

-4 t o  5 x loo2 @s/sec. with e i the r  cesium or mercury vapor at 840" F. 

The design of the anemometer 

The expected f l o w  rate respanae of the meter was obtained. 

r a t e  range (lom4 t o  

drift on the meter readout. 

In the low f low 
gms/sec. ) the  accuracy of the meter was l imited by a 

A discussion of t h i s  drift and suggestions f o r  
reducing it are  included in the report. 4- 
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PROPELLANT FLW METER FOR ION ROCKET SYSTEMS 

by Keith M. Montgamery 

Thompson Ram0 Wooldridge, Inc. 

SUMMARY 

A research and development program t o  design, bui ld  end test a propellant flow- 
meter f o r  ion propulsion systems was conducted by TRW from January 1963, t o  

Apri l  1964. 

Several minimal pressure drop metering concepts including headmeters,  radi- 

a t ion  meters, gate meters, and thermal meters were considered for the applica- 
t ion .  A heated f i n  anemometer, with a temperature compensating reference ele- 

ment, was selected fo r  development during the  program. 

Other thermal flowmeters, including a hot-wire anemometer, calorimeter flow- 
meter, and a thermocouple flowmeter were considered but re jected on the basis 

of ant ic ipated insensi t ive flow response over the lower decade of the design 

flow rate range of 10 gms/sec, of e i t h e r  cesium or mercury vapor. 

Thermal analysis indicated tha t  the heated f i n  design was equally applicable t o  

e i the r  cesium or mercury service. 

-4 t o  5 x 

The flow sensing element was designed and optimized by an incremental heat 

balance technique, using a d i g i t a l  computor. 

were : 

The sensing element dimensions 

Fin length (perpendicular t o  vapor flow) = 2.50 in.  

Fin width (pa ra l l e l  t o  vapor flow) = 0.05 in. 
Fin thickness = 0.250 in .  

Support post height = 0.250 in. 
Support post diameter = 0.188 in .  

vi 



Nichrome w a s  used fo r  the  f i n  and boron n i t r i d e  for  the support post. 

constantan thermocouples sensed vapor temperature on the  heated and reference 
f in s .  
A constant temperature salt bath was used t o  maintain the meter assembly at  the 

design temperature of 840°F. 

a boi ler ,  superheater, metering or i f ice ,  desuperheater, and condenser. By the 

proper choice of o r i f i ce  and temperature se t t i ng  on the r i g  components the 
flowmeter could be cal ibrated with either mercury or cesium vapor. 

Chromel- 

The e l ec t r i ca l  input t o  the flow sensing f i n  w a s  0.18 BTU/hr for heating. 

The meter t e s t  and ca l ibra t ion  r i g  consisted of 

Experiments w i t h  mercury vapor indicated t h a t  the meter responded t o  changes i n  

flow r a t e  over the en t i r e  design flow range. The microvolt output of the system 
increased from -4 t o  -560 as the  flow changed from 2 x 10 gms/sec. 
A polar i ty  reversal  and voltage deviation from 0 t o  + 40 t o  0 microvolts was 

observed on the anemometer readout over the 3 x 10 t o  3 x gms/sec. flow 

r a t e  range. 
the  course of the cal ibrat ion.  

ance c i r cu i t ry  was recommended. 

-4 t o  2 x 

-4 

Th i s  was accompanied by a no flow dr i f t  of 50 microvolts during 

To correct t h i s ,  modification of the  nul l  ba l -  

The appendix of t h i s  report  contains operating instruct ions for the cal ibrator  

rig, cal ibrator  r i g  design and o r i f i ce  cal ibrat ion procedures. 

v i  i 
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1.0 INTRODUCTION 

On January 1, 1963, Contract NASg-2515 was awarded t o  TRW t o  develop a 
vapor flow meter su i tab le  for  ion engine t e s t ing  t o  indicate cesium or 
mercury mass flow rates i n  the range of 10 t o  5 x gms/sec. The 

spec i f ic  design objectives for  the meter a r e  l i s t e d  a s  follows: 

-4 

1. 

2. 

3 .  

4. 

5 .  

6. 
7. 

8. 

9. 

LO. 

11. 

12. 

Being placed i n  the  feed systemline between the  phase separator and 
the  ionization chamber without interfer ing with the  vapor flow or 
operation of the feed system. 

drop across meter. 

Operating continually for  a period of at  l e a s t  90 days or more without 

repair or t e s t  stoppage. 
Monitoring a flow rate which might be from 10 

p / s e c .  
Operating at  a temperature of 450°C (840°F). 

the vapor i n  the feed l i n e  is expected t o  be: 

"his would include no vapor-pressure 

-4 gms/sec. t o  5 x 

The operating pressure of 

(1) 
(2) 

For cesium, between 1 and 25 t o r r  

For mercury, between 0.1 and 1.0 t o r r  

Operating with an applied potential  of 10 kv above ground without 

danger t o  the operator. 

Having a remote read-out of the flow r a t e  on a scale  marked i n  gms/sec. 
Operating i n  an atmosphere of 

propellant.  
Operating wi th  an accuracy of five per cent or be t te r  of the full scale  

reading of the remote read-out. 
This reading should be 90 per cent of the flow r a t e  on remote read-out 

within twenty seconds a f t e r  propellant flow reaches full rated flow from 

a no flow condition and reading t o t a l  flow within s ix ty  seconds. 
Simple and quick calibration, with the need for  recal ibrat ion t o  be 

a t  a minimum. 
The remote read-out should cover one order of magnitude of flow per 

scale  and it should have at least  three select ions of scales  t o  cover 

the above mentioned range. 
It i s  not necessary tha t  the meter be capable of monitoring more than 
an order of magnitude range of flow for each ins ta l la t ion .  

t o  750 t o r r  without leakage of the 

1 



T h i s  report  i s  a technical discussion of metering concepts i n  general and 

the  thermal analyses considered i n  designing the vapor flow meter developed 
under t h i s  contract e f fo r t .  A review of meter requirements and reasons for 

choosing a heated f i n  anemometer as the  flow sensing element a re  presented. 

Detailed thermal analyses, including a d i g i t a l  computer program fo r  opt i -  

mizing the anemometer configuration a re  reviewed. The resu l t ing  meter design, 

test r e su l t s ,  and conclusions are subsequently discussed. 

The f i n a l  paragraphs of Section 2 deal  with the  complete meter configuration 
and i t s  attendant hardware. 

Laborbtory results of the systems operations a re  presented i n  Section 3 .  Prom 

t h i s ,  conclusions of the experimental results and recommendations fo r  possi- 

b l e  future  development e f for t  are  discussed. 

The appendix of t h i s  report  contains a descr ipt ion of the ca l ibra tor  and i t s  

operating procedures. Also included are t h e  o r i f i ce  ca l ibra t ion  da ta  which 

a re  subsequently used when cal ibrat ing the  anemometer with mercury or cesium. 

The design of the cal ibrat ion r i g  i s  also presented. This covers system 

analyses of the  r i g  boi ler ,  superheater, o r i f i ce ,  desuperheater, and con- 

denser. 
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2.0 I)ECHNICAL DISCUSSION - SYSTEM DEVELOPMENT 

2.1  Metering Concepts 

Several rate metering concepts were considered which could s a t i s f y  the design 

objectives l isted i n  Section 1.0. In r a t e  meters or rate measuring processes, 

the  functioning of the primary metering element depends upon some property of 

the f l u i d  other than, or i n  a d d i t i o n  t o ,  volume and mass. These properties 

may include k ine t ic  energy (head meters), radioactive properties ( radiat ion 

meter), momentum (gate meters), specific heat (thermal metersj, and the  l i k e .  

A secondary element i s  always included which u t i l i z e s  a change i n  the  prop- 

e r t y  concerned fo r  obtaining an indication of the flow rate and generally 

embodies some device which draws the necessary inferences automatically, 

so t h a t  the observer can read the  r e su l t  from a d ia l  or chart .  

After c r i t i c a l l y  reviewing each of these spec i f ic  types of flow indicators,  a 

thermal meter was f i n a l l y  chosen as the instrument tha t  would be most l i k e l y  
t o  meet the design obdectives. 

2.1.1 Thermal Flow Meter Analysis 

In the  f i e l d  of flow measurement the  term thermal meter refers t o  an instru-  
ment i n  which the t ransfer  of heat t o  or from the f l u i d  cons t i tu tes  the basic 

par t  of the  metering action. 

Thermal meters are  generally classed i n  two groups: 

Group 1 - Meters i n  which the e f fec t  of a f l u i d  stream on a hot body i s  

involved, and 

Group 2 - Meters i n  which the  e f fec t  of a measurable quantity of heat 
t ransferred t o  or  from the f l u i d  stream i s  involved. 

Thermal meters of the first group depend on careful cal ibrat ion fo r  satis- 

factory operation. In  t h i s  group, the hot wire anemometer i s  a notable ex- 

ample and several  forms of t h i s  instrument have been developed fo r  the mea- 

surement of vapor stream veloci t ies  and veloci ty  f luctuat ions.  
specialized meter, a r e l a t ive ly  sl ight movement of gas and the resu l t ing  

cooling of the  wire e f fec ts  the wire's e l e c t r i c a l  resistance.  

I n  t h i s  

3 



Correlation of gas velocity with t h i s  change i n  resistance may be made with 

the use of a constant voltage c i r cu i t  o r  a constant resistance c i r cu i t .  

For meters of the second group t o  operate sa t i s f ac to r i ly  it i s  necessary t o  
have : 

1. A knovledge, t o  the required degree of accuracy, of the  spec i f ic  
heat a t  constant pressure of the f l u i d  stream being measured. 

Efficient means of t ransferr ing he%t t o  the  f lu id  stream and of 

measuring the  heat input. 
2. 

3 .  Sufficiently accurate means of measuring or controll ing the  temper- 

a ture  ckange of t he  f lu id  stream due t o  the t ransfer  of heat. 

The first thermal flow meter t o  be reviewed i s  the vapor calorimeter flow 

meter (Group 2 )  shown schematically i n  Figure 2-1 ( A ) .  

is  t ransferred rad ia l ly  from the vapor stream through a thernopile calo- 

rimeter. The calorimeter monitors heat flu. and records t h i s  f lux  as a 

sui table  microvolt signal.  Thermocouples located a t  the in le t  and discharbc 

of the caloriineter record vapor temperature drop due t o  the heat t ransfer .  

Flow r a t e  and fluctuations i n  flow r a t e  m;y be then determined from 

In  t h i s  design, heat 

where 

9, = r;ldial flux 
At = stream temperature change 
C = vapor specific heat 
P 
(A complete l i s t  of symbols and t h e i r  appropriate un i t s  i s  presented 

as .,ppendix E of t h i s  report) .  

li disadvantage t o  t h e  calorimeter design i s  t h e  d i f f i c u l t y  of obtaining re-  

producible temperature readings i n  the downstream thermocouple. 

The inser t  i n  Figure 2-1(,:) shows a typ ica l  boundary layer  e f fec t  i n  the  
laminar  regime. 

rimeter. 
Lhe thermocouple i n  the laminar boundary a t  a point where time-wise con- 

stancy of temperature rcadings can be assured. 

This boundary is  caused by the  cooling e f f ec t  of the calo- 

Obkuining meaningful downstream temperatures requires positioning 

4 
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The calorimeter thermopile i t s e l f  has been shown t o  be an accurate device, capable 

of regis ter ing small heat t’luxes ( 

(1 x lbs/sec). 
drawbacks i n  unattended operation f o r  ninety days. 

90 BTU/hr) and monitoring small flow r a t e s  

It is, however, a complex device and could su f fe r  r e l i a b i l i t y  

One f i n a l  disadvantage involves the e f fec t  of the calorimeter on the  engine 
system. 

t o  surroundings. In e f fec t  t h i s  f l ux  cools the vapor stream. 

s i en t  e f fec ts  f r o m  the surrounding it would be necessary t o  include a system of 

guard heaters, thereby establishing a steady environmental temperature. 

The thermopile operates on a steady r ad ia l  heat f l u x  from vapor l i ne  

To minimize t ran-  

Another precision thermal meter which w a s  seriously considered i s  the  heated 

thermocouple (Figure 2-1(B)). 

externally by an appropriate c i r c u i t .  This couple, together with an unheated 
one upstream, i s  placed in to  the flow path. Heater current is adjusted so  t h a t  

the measuring thermocouple is  a few degrees higher i n  temperature than the tube 
environment . 

In t h i s  approach, a thermocouple i s  heated 

In operation, changes i n  the  flow ra t e  cause the vapor t o  remove more or l e s s  

heat from the thermocouple. This f luctuat ion i n  the  heat t ransferred t o  the 

flowing vapor is  reflected by a change i n  thermocouple output. The unheated 
thermocouple upstream a c t s  as a compensating device f o r  changes i n  vapor tern- 
perature. Should t h i s  temperature change without a change i n  flow, the adjusted 

reading of the  upstream couple would be used in  an appropriate compensating c i r -  

c u i t  t o  correct an otherwise erroneous meter output. 

The serious drawback t o  t h i s  design can be best  seen by examining the thermo- 
dynamic relationships involved : 

‘in Qout = Qstorage 
dT 

‘m T - nd2 h A t  = $ pm 
Qin 7 

dT + fid2 At - nd’ - -  
Qin b P m  ‘rn Kv 

where 
= required heater c i r cu i t  power 

= heat t ransferred t o  flowing vapor 

= heat required t o  bring thermocouple up t o  operating 

Qin 

Qout 

Qstorage 
temperature ( t h i s  is a t rans ien t  term) 
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d 

Pm 
dT/de 
h = heat transfer coefficient; sphere t o  gas 

= diameter of heater sphere 

= e l e c t r i c a l  r e s i s t i v i t y  of sphere 

= change i n  sphere temperature with t i m e  

t thermal conductivity of streaming vapor Kv 

The drawback becomes apparent i n  reviewing Figure 2-2. 
has been plot ted against the Nusselt number f o r  a sphere (Nusselt number = 

hd/Kv). 
perimental resu l t s .  

approaches a lower l i m i t  of 9 the  relationship changes rad ica l ly  and the  heat 

t ransfer  coeff ic ient  becomes insensit ive t o  changes i n  Reynolds number. 

This f l a t t en ing  out of t he  curve means that at  lower veloci ty  ranges the  hd/ 
K term of equation 1-4 is essent ia l ly  veloci ty  insensi t ive.  Unfortunately 

f o r  the intended meter application forced convection of heat, sens i t ive  t o  

veloci ty  fluctuations,  is the primary basis for  meter operation. Calculation 

indicates t ha t  the "f la t tening out" of the  curve i n  Figure 2-2 occurs well 
above the  lower l i m i t  of the required ve loc i t ies .  This eliminates the in- 

strument from fur ther  evaluation. 

Here Reynolds number 

The values plot ted are not theore t ica l  but ac tua l ly  observed ex- 
It is  seen i n  t h i s  f igure tha t  as the Reynolds number 

V 

The hot wire anemometer has been used successfully i n  applications s imilar  t o  

the intended one. Unfortunately it suf fers  from the  same i n sens i t i v i ty  char- 

a c t e r i s t i c  described i n  the thermocouple meter. 

s i m i l a r  t o  2-2; it is a plot  of observed Nusselt number versus Heynold's 

number for  a cylinder i n  gas flow. 

f o r  gas f low ax ia l  or normal t o  the wire axis. 
tends t o  f l a t t e n  at  lower values of velocity.  Analyses indicate t h a t  at the  

lower veloci ty  ranges specified i n  the application, an area of i n sens i t i v i ty  

w i l l  r e su l t .  

The data of Figure 2-3 is 

These r e su l t s  appear t o  apply analogously 

As i n  Figure 2-2, the curve 

The flow meter t o  be developed is  shown schematically i n  Figure 2-4. 
un i t  is  properly classed as a thermal device which measures the e f f ec t  of the 

f l u i d  stream on a hot body. 
t o  the  vapor flow. A thermocouple is attached t o  the f i n  body. When i n  

operation, the  f i n  is  careful ly  maintained a t  some nominal temperature above 
the  environment t o  reduce radiation losses  t o  a minimum. 

This 

It consists of a heated f i n  or p la te  placed ax ia l  

7 
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As the  vapor flow f luctuates  the  heat t r ans fe r  conditions from the  f i n  surface, 
across t h e  boundary layer  t o  the  vapor, produce a change i n  fin temperature 

which is recorded by the  surface thermocouple. 

f i n  and thermocouple have been mounted i n  the vapor t r ans fe r  line. 

rexmins unheated except by the  effects  of the  system environment. 

Upstream of the  hot fin a second 
This f i n  

Th i s  upstream f i n  and thermocouple ac t s  as a vapor temperature compensating 

tua t ion  the cooling (or heating) effects  of the gas passing over t h i s  f i n  is  

measured by the attached thermocouple. 
compensate fo r  any erroneous reading of the f i n  thermocouple a r i s ing  from the 

vapor temperature variation. 

&\-ice* pG&d \-&pGr i;.GFerp,est .&.r---...,.+ ..-A cIL.....I.cI r.94-L b G u p c I s L c , I u c  LLrcu l&G W A b d K i t  a f h v  r a t e  fliic- 

This mi l l ivo l t  output i s  used t o  

A radiat ion shield is added t o  reduce inaccuracies due t o  radiat ion changes. 

This shield i s  shown i n  the i l l u s t r a t ion  as a heater placed at the tube w a l l  

and i s  held a t  the same temperature as the  reference f i n  surface. The shield 

is  so placed tha t  i t s  boundary layer does not in te r fe re  w i t h  the  c r i t i c a l  heat 

t r ans fe r  occurring at the f i n  surfaces. 

The heated f i n  meter was-chosen for development pr inc ipa l ly  because the 

convection heat t ransfer  coefficient f o r  t h i s  geometry var ies  l i n e a r l y  w i t h  

vapor veloci ty  over the en t i r e  design flow rate range. 

t ransfer  coefficient i n  terms of the Nusselt number for  a f i n  configuration 

i s  shown i n  Figure 2-5. 
Reynolds number. 
been superimposed i n  the i l lus t ra t ion .  

data for  the sphere has shown tha t  as  vapor velocity decreases a l i m i t  is  

reached beyond which heat t ransfer  r a t e s  a re  e s sen t i a l ly  insensi t ive t o  ve- 

l o c i t y  changes. 

accurately. 

curve a t  lower Reynolds numbers. 

occurs 
im+,ing the spherical  ac& cylin,c7,rical corfiguratioo frcz fllrther c m s i d e r a t i m .  

The overal l  heat 

This i l l u s t r a t ion  p lo ts  heat t ransfer  data versus 

As a point of i l l u s t r a t ion  the sane plot  fo r  a sphere has 
As mentioned e a r l i e r ,  experimental 

A t  t h i s  point the thermal device can no longer meter flow 

'Ifhis insens i t iv i ty  i s  shown as  the de f in i t e  f l a t t en ing  out of the 

It i s  noted that  t h i s  insensi t ive range 

within the low flow rate meter design specifications thereby elim- 

11 
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The flat f i n  meter however is def in i te ly  linear (curve of Nusselt versus 
Reynolds numbers) t o  well below the lowest specif ied ve loc i t ies .  

In fac t ,  t h i s  heat t ransfer  correlation curve theore t ica l ly  has no lower ve- 

l o c i t y  l i m i t .  

which has led t o  the  recommendation of the f i n  configuration. 

It is t h i s  a b i l i t y  t o  t ransfer  heat a t  extremely low ve loc i t i e s  

2.2 Anemometer Sensing Fin Design 

The objectives i n  designing tne anemometer f i n  are listed a% follows: 

- - 

1. 

2. 

Acceptable performance in e i ther  mercury or cesium environment. 

Maximum thermal output change from minimum vapor veloci ty  change. 

The following discussion is presented t o  indicate how each of these objec- 
t i v e s  were m e t .  

2.2.1 Establishment of Meter Performance Characterist ics 

Referring t o  Figure 2-5, the heat transfer coeff ic ient  (h) i n  the Nusselt 
number is the prime factor  measured by the  anemometer f in .  In  the insen- 

s i t i v e  range of the sphere the h values remain e s sen t i a l ly  constant, while 
they tend t o  decrease linearly with f l o w  f o r  the  f i n  data. 

calculated from the r e l a t ion  

The number h is  

where Nux = the  Nusselt number with the charac te r i s t ic  l inear  dimension 

pa ra l l e l  t o  the direction of flow. 
P r  = Prandtl number 

= the  Reynolds number with t h e  charac te r i s t ic  l i n e a r  dimension Rex 
pa ra l l e l  t o  the direction of flow. 

-4 
For both cesium and mercury a t  840'F and 1.0 t o r r  flowing a t  10 
through a one inch I . D .  tube, the following values were calculated. 

width (x) of 0.05 inches was used for  the calculations.  

gms/sec 
A f i n  

TRW Report No. ER-5078 



Nu (BTU/hr f t2  F)  - ---- X 
Flowing Re,, (1) 

4L 
I- 

Media P r  

3.56 x 1.75 x 

Cesium 4.22 x 10-I- 2.03 x 3.58 x loe2 

2.70 x 

2.28 x 

(1-7) 

Because the  magnitude of the heat t ransfer  coefr ic ient  is  the  same for both 
mercury and cesium vapors (undei* similar flow conditions) the  anemometer con- 

cept is  equally applicable t o  e i ther  of t he  specified vapors. 
all design calculations were performed for  the data  with cesium vapor. 

calculations could have been performed equally as  w e l l  with the  data for  

mercury vapor. 

For t h i s  reason 
The 

2.2.2 Meter Design Procedure 

Referring t o  Figure 2-4, a design procedure was formulated t o  es-tablish the  

following xeter parameters : 

1. anemometer f i n  length 
2.  anemometer f i n  width 

3 .  anemometer f i n  thickness 
4. support post diameter 

5 .  support post height 

I n  addition, compatible materials of construction were considered. The design 
obJective was t o  rnaximize the anemometer output ( the net  microvolt s ignal  from 

the thermocouple system) for a selectea combination of geometric and metal- 

l u rg i ca l  meter parameters. 

Because of the rnagnitude of the  Reynolds nunibers encountered i n  the flow 
systems, a l l  three forms of heat t ransfer  ---- conduction, convection, nnd 

radiat ion ---- had t o  be considered. 

(l) Data taken from WADC Technical Report 59-598 
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Furthermore, natural  as w e l l  as forced convection was included i n  the  cal-  

culations.  Therefore, the  design technique was formulated on t he  basis of 
a d i g i t a l  computer program where the input data were the anemometer param- 
e t e r s  and vapor veloci ty  and the  output the anemometer response (vapor 

veloci ty  versus degree of f i n  cooling). 

The dizgram i n  Figure 2-6 was used as the  m i h e m t i c a l  &el  for the  cozputer 

study. 

to 

temperature as t he  unknown. 
equations with twenty unknowns. 
necessary data t o  p lo t  vapor velocity versus f i n  temperature. 

Each of the numbered points located within the increments are referred 

=&fJ ...-am+" yurrruo.  A h a t  Salar;ce is w i t t e n  far eack; n&zl 2 ~ h t  w i t h  the 

This r e su l t s  in twenty simultaneous algebraic 

The solution of these equations provides the 

These equations are l i s t e d  as fo l lows:  
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The $equations (defined as heat flux product equations) are fur ther  

defined as: 

2 

2h 
Icl, = kw “dw 

nk h ( D + g )  
W 

-.__ 

D - d  
W 



1 1/3. C p P f  M = kf (3 .31 x 10- ) (Pr) , Pr = - 
kf 

k wz ‘IC, =P 9 X 

2 k S JI (D2 - dw ) 
-2Fi----” -.- +lo = - 

Icl,,= 
‘kg xw 

18 
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Summing the  terms i n  equations 1 t o  20 and equating them t o  zero defines the 
equalibrium o r  steady state rather  than the  t rans ien t  operating conditions 

of the  anemometer, 

Tx (0 c x 1 2 0 )  = Nodal temperature a t  point x. 

E Meter w a l l  temperature (840°F). 
TO 

‘w gen 

V 
T 

Qgen 

kW 

d 

h 
W 

D 

S 
k 

CT 

F 

B 

kf 

P f  

CLf 

f V 

= A mathematical term defined as the heat f lux product. 

This $term is the product of the heat t ransfer  co- 
e f f i c i e n t  a t  t he  nodal point times the  area through 
which heat t ransfer  occurs. The of heat con- 

the  heat conduction is  
duction along with the representing 

= Internal  heat generation by current passing through 

the  lead wires t o  the anemometer f i n .  

= Radiation constant. 

E Vapor temperature. (840°F) 

= Heat generation i n  the anemometer f i n .  

= Thermal conductivity of t he  heater and lead wire. 

= Lead wire diameter. 

= Incremental height of the  anemometer support member 

= Support member dimeter. 

= Thermal conductivity of support member. 

= Stefan-Boltzman radiat ion constant. 

E Radiation view factor .  

= Convection heat t ransfer  coeff ic ient  

(Reference: Figure 2-8) 

= Thermal conductivity of flowing vapor. 

Linear velocity of flowing vapor. 

= Density of flowing vapor. 

= Viscosity of flowing vapor. 

19  
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W 

X 

P r  

C 
P 

g 

B 

AT 

C 

= Anemometer f i n  width. 

= Incremental anemometer f i n  length. 

E Prandtl  number. 

5 Specific heat of flowing vapor. 

s Dimensional constant (32.2 f t  lbm/lbf sec ). 

= Thermal expansion coeff ic ient  or bulk modulus. 

2 

= Temperature difference between t h e  heated anemometer 
f i n  and the flowing vapor. 

= A number t h a t  i s  a function of the Prandtl  number. 
(Reference : Figure 2-9). 

Z = Anemometer f i n  thickness. 

k = Anemometer f i n  thermal conductivity. 
P 

A t  steady s t a t e  conditions for  each of the  increments, the heat t ransfer red  
i n t o  the  nodal point plus the heat generated at the nodal point; i s  equal t o  

the  heat being transferred away from the nodal point. 

modes (conduction, convection, and rad ia t ion)  are  considered. 

All heat t ransfer  

Terms w i t h  

$1, $!!, ~ 2 ,  $3, $f4, $/ , $!lo, and $11 are  conduction terms. Radi- 

a t ion  terms contain +5 and $8 and convective terms contain +6 and 
The heat t ransfer  pathrover which each of these Yterms apply i s  shown i n  

Figure 2-6. 

The radiat ion constant (K ) i s  determined by the following consideration. 1 

Heat t ransfer  by radiat ion from point 16 t o  the  tube w a l l  may be expressed a s  

4 
(TO 

hr 
- 

A =  

Radiation 

wal l s  and 

- Tl:) Cr-F A = hr (To - T16) A 

Radiation heat t ransfer  coeff ic ient  

Surface area from which radiat ion i s  occurring 

i s  assumed t o  occur only between the anemometer f i n  and the meter 

not between the f i n  and the vapor. 
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Equation 1-8 can be simplified t o  read: 

(1-9) 

The temperature re la t ionship (the r igh t  side portion of Equation 1-9) is 

89C 

*PF 

defined t o  be 5. Assuming p la t e  temperature ( T  ) t o  be i n  the v i c i n i t y  of 16 
F ( 1 3 5 0 " R )  and the w a l l  temperature t o  be 840°F ( l j C D " R ) ,  5 equals 

9.3 x 10 9 o$ 5 =  
ying t h i s  constant t o  the radiat ion terms of the calculations reduces the 

order of the unknown temperatures from the fourth power t o  the  first power, and 

thereby establishes a ser ies  of simultaneous l i nea r  first order equations. 
The assumption is  made that  the f i n  temperature w i l l  always be 8 9 0 " ~  -- an 
assumption verified by computer resu l t s .  
i s  i n  e r ror  i s  a measure of the inaccuracy of the  computer solution. 

The degree t o  which t h i s  assumption 

"he term$a considers the convective heat t ransfer  e f f ec t s  resu l t ing  from 
the vapors flowing over the anemometer f i n .  The basic  r e l a t ions  for  the 

heat t ransfer  coefficient were taken from a paper by Sparrow and Greggl. 
When the flow of heat i s  opposite t o  the d i rec t ion  of the gravi ty  vector the 

plus term i s  used i n  the  $a formulation. When the  flow of heat is  pa ra l l e l  
t o  the gravi ty  vector the minus term i s  used. 

The heat generation terms (Q 
gen 

calculated from e l e c t r i c a l  res is tance heating relat ionships .  

( the heat generation i n  the anemometer f i n )  

and gen) in the computer equations were 
The term Q 

gen 
is  calculated as: 

2 Q = i  R 
gen P 

(1-10) 

'Spmrow, E. M., and Gregg, J. L., "Buoyance Effects  i n  Forced Convection 
Flow and Heat Transfer", JI. of Appl. Mech., Transactions of the  ASME, p. 
133, March 1959. 
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where 

i 

R 

= The current f l a r ing  through the anemmeter fin. 

= The resis tance of the anemometer f i n ,  
P 

For % @;en ( the heat generation i n  the heater lead wires) 

2 
Qw gen Rw 

where 
= The resis tance of the heater lead wires within the  support post. 

RW 

Equations (1-1) through (1-20) were solved with an IBM 7070 d i g i t a l  computer. 

2.2.3 Computer Program Results 

I n  designing an optimum anemometer configuration, the following geometric 

var iables  were t o  be specified: 

x ( f i n  length) 
w ( f i n  width) 

z ( f i n  thickness) 

D (support post diameter) 

h (support post height) 

To optimize the flow meter, a set of values for the variables was chosen. 

Then the  temperature magnitudes at each of the nodal points were calculated 
f o r  d i f f e ren t  vapor veloci ty  values over the flow rate range. 

average f i n  temperature was determined for  each veloci ty  point. 
data, a plot  was made of average f i n  temperature minus vapor temperature 

( the  cooling e f fec t  of the vapors) versus vapor velocity.  The greater  the 

slope of t h i s  curve, the more sensit ive is the meter t o  indicate  vapor ve- 

l o c i t y  changes. 
of geometric variables u n t i l  a maximum sens i t i v i ty  was obtained. 

Next, an 

From t h i s  

This s e n s i t i v i t y  curve was plot ted f o r  d i f fe ren t  combinations 

25 



The following resu l t s  were obtained from the  computer s tudies .  

Figures 2-6 and 2-7, t he  numerical. values used i n  the  calculat ions were: 
Referring t o  

Support post diameter = 0.0625 inches 

Support post height = 0.5 inches (5h) 
Fin thickness = 0.005 inches ( 2 )  

Fin width = 0.05 inches (w)  
Fin length = 3.14 inches (gx) 

(D) 

I n  addition, the thermocouple and heater lead wires were 0.005 inches i n  
diameter and were considered t o  have the thermal conductivity of constantan 

(15.5 BTU/hr f t  OF). 
couple i t se l f .  Later it was decided t o  a t tach  a thermocouple wire d i r e c t l y  

t o  a nichrome fin; thereby eliminating the  necessi ty  of a bimetal l ic  piece. 
For t h i s  calculation the  w a l l  temperature and vapor temperature were re- 

spectively 879°F and 840°F. 
a ture  and vapor temperature should be ident ica l .  

perature fluctuations within the meter. 

Here it was intended t o  u s e  the  f i n  as the thermo- I 

Later it was determined t h a t  the  w a l l  temper- 

This minimized vapor tem- 

Throughout t he  ent i re  f l o w  range 

t o  the f i n  was constant and equal t o  1.21 x 
performed f o r  cesium vapor. 
calculations.  Boron n i t r ide  because of i ts  machineability was used i n  the 

f i n a l  meter design. 

t o  5 x lo'* gms/sec.) the heater input 

BTU/hr. A l l  calculations were 

Magnesium oxide w a s  used a s  the f i n  support i n  the  

Because of the  low flow rate requirements i n  the  design specif icat ions,  it i s  

necessary t o  minimize or control a l l  extraneous heat losses.  Therefore, i n  
the  radiat ion calculations the  emissivity of t he  f i n  and post support w a s  

taken as 0.1. 
r e f l ec t ive  surface over the  anemometer f i n .  This was accomplished by polish- 

ing the f i n  t o  a high degree of surface r e f l e c t i v i t y .  

To accomplish t h i s  physically, it w a s  necessary t o  have a highly 

26 
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For a cesium flow rate of 5 x 

calculated : 
gms/sec. the  following temperatures were 

*1 - 
*2 = 

T4 - 
*5 

T7 = 
Ts = 

T9 = 
Tlo 

T =  3 

I 

T6 

875.91801 
873.- 95732 
869.57080 

867- 89524 
875.78432 
8p. 86180 
869.5026 

868.29762 

868.24488 
867.83581 

T1l = "F 

= 
T r  
13 
T14 
T =  

1 5  
T16 = 
T x  
17 

T18 
I 

T19 
T20 = 

875 44625 
871.63491 
869,34322 
868.12058 
867.72305 
867.89654 
867.96317 
868.00927 
868.03&5 
868.05222 

Note: Subscripts apply t o  nodal point numbers i n  Figure 2-6. 

Even though the number of significant f igures  i n  the  answer a re  more than 
those used i n  the  input data,  the difference between many of these values 
( i * e * #  ~ 1 9  - T 18 ) is su f f i c i en t ly  small t h a t  a l l  of the  f igures  must be 

used i n  order t o  obtain an accurate answer. 

These calculations were repeated for four d i f fe ren t  flow r a t e s  (given both 
as mass and l inear  velocity through a one inch tube) .  

The calculated sens i t i v i ty  curve for an anemometer f i n  of t h i s  geometry over 
t he  design flow rate range is  shorn i n  Figure 2-10, 
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These computed results indicate that  the  meter s e n s i t i v i t y  is s igni f icant ly  

d i f fe ren t  Over the  flow range. A t  a flow near 10 

temperature change indicates a vapor veloci ty  change of approximately 1.2 

f t / sec .  

indicates a vapor AV of l e s s  than 0 . 1  f t / sec .  

-4 gm/sec, a one degree 

gm/sec, a one degree temperature change 2 A t  a flow near 5 x 10- 

The accompanying graphs i n  Figiires 2-U- tl-irowh 2-15 a re  optimization curves 

i n  which only one geometric parameter was varied a t  a time. 
ception of the  f i n  width cdcuiat ions,  t'ne velocity levels 

With the ex- 
all i t i  the 

t o  gm/sec flow r a t e  range. The f i n  width s tudies  were i n  the  

5 x 
Figure 2-10, a l l  calculations were made for cesium vapor. 

t o  5 x loe2 gm/sec flow rate range. A s  f o r  t he  da ta  p lo t ted  i n  

The slope of t h e  curves (l inearized for calculat ion simplicity) i s  a measure 
of the anemometer sens i t iv i ty .  The more negative the slope, the more sensi-  

t i v e  the  anemometer w i l l  be. With a meter of m a x i m u m  sens i t i v i ty  a la rger  

e l e c t r i c a l  thermocouple output will be obtained per un i t  change i n  vapor 

veloci ty  . 
Examining Figure 2-11 indicates that t he  longer the  f i n  length is made, the 

more negative is the slope and the  more sensi t ive is  the meter. The data in 
Figure 2-12 indicate 
sensi t ive i s  the  meter. A s  shown i n  Figure 2-13, increasing the anemometer 

f i n  thickness frm 0.005 inches t o  0.010 inches does not change the meter 

s ens i t i v i ty .  A one-quarter inch height support post renders a more sensi-  
t i v e  anemometer than a one-half inch support post -- Figure 2-14. 
Figure 2-15, a f i n  width of 0.08 inches was more responsive t o  vapor velocity 

changes than a f i n  width of 0.10 inches. 

that the smaller the  support post diameter, the  more 

And from 

From these calculations the following parameters were used i n  building the 

anemometer . 
f i n  width = 0.05 inches 
f i n  thickness = 0.005 inches 

f i n  length = 2.50 inches 

support post 
height = 0.250 inches 

diameter = 0.063 inches 
(Later, because of fabr ica t iona l  

support, post. 

d i f f i c u l t i e s ,  t h i s  diameter was in- 
creased t o  0.188 inches). 
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I l l  
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I I 

I I  -F 2- 1/ 2" length 

"F/ft/sec 

@ = (40.7 - 42.4)/(1.35 - 0.19) = -1.47 "F/ft/sec 

@ = (40.2 - 42.0)/(1.35 - 0.19) = -1.55 "F/ft /sec 

ANEMOMETER PARAMETERS 

- Support Post Diameter ( D )  = 1/16'' 
Support Post Height (5h) = 1/4" 
F in  Thickness ( 2 )  = 0.005" 
Fin Width (w) = 0.05" 

Computer Run A-22-6 

Cesium Linear Velocity, f t / s ec  

Figure 2-11 

Anemometer F i n  Sens i t iv i ty  Optimization Curve 

(Fin Length Variation) 
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Complter Run A-22-5 

02 4 . .8 1.0 2.0 

I 

0 = (39-6 - 41.3)/(1.35 - 0.19) = -1.47 "F/ft/sec. 

ANEMOMETl3R PARAMETERS 

Fin Thickness (2 )  = O.OO5" 
Fin Width (w) =: 0.05" 
Fin hngth (9x) = 3.14" 

- Support Post Height (5h) 1/4" 

Anemometer Fin Sensi t ivi ty  Optimization Curve 
(Support Post Diameter Variation) 
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0.010" thickness 

ANEMOMETER PARAMETERS 

Support Post Diameter (D)  = 1/161i 
Support Post Diameter (5h) = 1/4" 
Fin Width ( w )  = 0.05'' 
Fin k n g t h  ( 9 ~ )  = 3.14'' 

- 

Computer Run A-23-4 
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/ 5 x gm/sec. 

loo2 gm/sec. 

ANEMOMETER PARAMETERS I 
- 

Support Post Diameter ( D )  = 1 / W  
Support Post Height ( 5h) = 1/2" 
Fin Thickness ( 2 )  = O.OO5" 
Fin Length (gx) = 4" 

Computer Run A-22-3 I 

0 .2 .4 .6 .0 1.0 

Cesium Linear Velocity, f t / s ec .  

Figure 2-15 

(Width Variation) 
Anemometer Fin Sens i t iv i ty  Optimization Curve 

2.0 
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The reason for the  trends i n  performance of the  anemameter f i n  o r  sensing 
element can be explained by the heat t r ans fe r  modes experienced by the  meter. 
In t he  convection terms both forced and natural. convection are experienced. 

Forced convection is  more velocity dependent than natural  convection. 

fore,  by making the f i n  as long as possible (length d i rec t ion  being defined 
as t h a t  direct ion perpendicular t o  vapor flow) the  heat t r ans fe r  by forced 

convection i s  maximized and the heat t r ans fe r  by natural convection is  min- 

imized. The prac t ica l  l i m i t  i n  choosing the length was limited by how much 

material  can be conveniently f i t t e d  i n t o  the inside diameter of the  flow tube, 

There- 

In  order t o  minimize the heat conduction losses  from the f i n  down through the  

support post the  sensing element should be as t h i n  as possible i n  both i t s  
width d i rec t ion  and f i n  thickness. 

s t i l l  necessary t h a t  f i n  character is t ics  be maintained. A f i n  i s  defined as 
a geometric configuration in  which the thickness i s  one-tenth or l e s s  of the 

width. 

inches, t h i s  f i n  concept i s  maintained. 

However, as shown i n  Section 2.1, it i s  

Therefore, i n  making the width 0.05 inches and the thickness 0.005 

Minimizing the  support post diameter also minimizes the  heat conduction losses  
through the post. The prac t ica l  l i m i t  on the  post diameter is based upon 

what s i z e  wire feed through holes can be made i n  it for  accommodating the  

heater and thermocouple leads. 

“he f i n a l  computer run with the optimum s e t  of geometric variables i s  shown 

as Figure 2-16. 
l om4  t o  

The heat input t o  the f i n  i n  t h e  calculations for  Figures 2-ll through 2-15 

was 1.2  x BTU/hr. 

A s  i n  Figures 2-11 through 2-14, the flow rate is  i n  the  

@;m/sec. range. Heat input t o  t h i s  f i n  was 1.8 x 10-1 BTU/hr. 

Increasing the heat input t o  t h e  f i n  only ra ised the average temperature l e v e l  
of t h e  anemometer surface,  

f i n  and support post parameters more d i r e c t l y  changed the slope of the velocity 
versus f i n  temperature curves. 

It did not a l t e r  anemometer s ens i t i v i ty .  Varying 
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Slope = (67.0 - 70.0)/(1.35 - 0.19) = -2.58 "F/ft/sec. 

5 x :  

\ 

T 
I 

r4 4 /sec. 

ANEMOMETER PAMTERS 
Support Post Diameter ( D )  = 1/16" 
Support Post Height (5h) = 1/4" 
Fin Thickness (2) = O.OO5" 
Fin Width ( w )  = 0.05" 
Fin Length (gx) = 2.50" 
Fin Thermocouple - Chrome1 Constantan 
Fin Material - Nichrome 

- 

LO+ gm/sec.--- 

t 
Computer Run A - 2 4 - 1 9  

.2 .4 6 .8 1.0 2.0 
Cesium Linear Velocity, f t / s ec  . 

Figure 2-16 

Theoretical Anemometer Operating Curve 
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Optimizing the meter configuration increased the  s e n s i t i v i t y  slope from 
an average -1.5 "F per f t /sec.  value ( i n  curves 2-11 through 2-14) t o  -2.6 
OF per f t /sec.  i n  Figure 2-16. 

2 .3  Anemometer Design 

The p i c t o r i a l  drawing shown i n  Figure 2-4 was the  first concept of the flow 

meter configuration. After the computer program had been completed and optimum 
.v.-.l,. vQIuss fcr t h e  sensing f i n  and auTprt. member geometric parameters were chosen, 

there  s t i l l  remained the task  of assembling the system with i t s  attendant 
hardware in to  an in tegra l  unit. 

A s  shown i n  Section 2.2, the dimensions of the  f i n  and support member were: 

1. 

2. 
3. Fin thickness = 0.005 inches 
4. 
5. 

Fin length (direct ion perpendicular t o  vapor flow path) = 2.5 inches 
Fin width (direct ion para l le l  t o  vapor flow path)  = .O5 inches 

Fin support height = 0.25 inches 
Fin support diameter = 0.063 inches 

A schematic diagram of how the  configuration was assembled in to  a f i na l  un i t  

i s  shown in  Figure 2-17. 
sensing f in ,  a salt bath was used t o  heat the meter. 

of potassium and sodium n i t r a t e s  with a l iqu id  range of 300 t o  1800"~. 

To assure a constant uniform temperature around the  

The salt w a s  a mixture 

The s a l t  bath temperature was maintained by a TRW designed control ler  un i t .  
A Winsco Instrument Control type 2404-APB temperature transducer and an iron- 

constantan thermocouple were inserted in to  the salt bath. 

couple was used t o  indicate the bath temperature, while the  transducer was 
connected t o  the control bath unit. 

shown i n  Figure 2-18. 

The iron-constantan 

A c i r cu i t  diagram for t h i s  assembly i s  

The control ler  supplies a proportioning signal ra ther  than an on or off s ignal  
t o  the  salt bath heaters,  and w i l l  maintain the  bath teEperature at  840°F 
5 ' .  
u n i t  w i l l  function over a 500" t o  1000°F temperature range. Changing the 

values of these potentiometers could make the  uni t  workable over a 70" t o  
1000°F temperature range. 

With the adjustable potentiometers shown i n  Figure 2-18, the  control ler  
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The heat sources for the  bath were two 100 w a t t  type A-23  Watlow immersion 

heaters . 
2 . 3 . 1  Fin Design and Feed Through Assembly 

Several attempts t o  build the heated anemometer f a i l ed  before it was  f i n a l l y  

decided t o  shape the  f i n  from 0.005 inch nichrome s t r i p  and a t tach  the  heater 

wires d i r e c t l y t o  the f i n  -- making the  anemometer the heater element. 

thermocouples were spot welded t o  the  center of the f in .  
shown schematically i n  the  inser t  of Figure 2-17, 

The 

This concept i s  

The feed through mechanism used t o  hermetically seal the  thermocouple and 

heater lead wires i s  shown schematically i n  Figure 2-19. A Teflon sealant 

gland within the Conax f i t t i n g  is  compressed against the w i r e  leads and 
the  inside of the f i t t i n g  body u n t i l  a hermetic seal i s  obtained. The Conax 

f i t t i n g  i s  i n  turn welded in to  a Swagelok connector which f i t s  over the  tube 
containing the  boron n i t r ide  f i n  support. 

Because the  seal i s  at the Teflon compression gland, ra ther  than at the  support 

member i t se l f ,  there is no need for a nonporous support piece. 

boron n i t r ide  which i s  an eas i ly  machineable high temperature e l e c t r i c a l  in- 
sulator  w a s  used as the  f i n  support piece. 

t o  the boron ni t r ide by means of boron n i t r ide  cement. 

Therefore, 

The anemometer f i n  w a s  attached 

Care must be taken t o  maintain the sealant temperature between l i m i t s .  Ex- 

cessive temperatures will cause sealant decomposition. An excessively low 
temperature would. permit mercury condensation t o  occur at the  Teflon sealant 

gland, thereby causing an e l e c t r i c a l  short between the heater and thermo- 
couple wires. 

The ex-Lension length of the anemometer feed through was calculated on the  

basis  of heat conduction through a so l id  rod with one end immersed i n  an in- 

f i n i t e  heat source. (Figure 2-20). 
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Figure 2-19 
Schematic Diagram of Anemometer Feed 

Through 

Conax F i t t i n g  

Swagelob Tube F i t t i n g  

Boron Nitride Fin Support 

S a l t  Bath 



Anemometer S a l t  Bath Wall 
(840°F) T1 Feed Through Extension Mechanism 

4% 

a s i o n  Gland 
(350°F) T2 

Extension Length 

(70°F) Tg 

Fig1-u-e 2-20 

Mathematical Model of Anemometer 

Feed Through Extension 

1 
Assuming t h a t  the extension i s  a hollow c i rcu lar  tube, Eckert 
t h a t  the temperature profile along the tube i s  described as: 

has shown 

(1-11) 

AT2 = T2 - 

 AT^ = T1 - Tg 

'Eckert, E. i?. G . ,  "Introduction t o  the  Transfer of Heat and Mass", McGraw- 
H i l l  Book Company Inc., New York, New York, p.  27, 1950. 
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The cross section of the extension tube has the  configuration shown as: 

c = 1.96 x 10-l f t  

k = 12.4 BTU/hr f t  "F 

A = 9.72 x f t2  

(for type 316 stainless s t e e l )  

h is  assumed t o  be = 2 BTU/hr ftz "F 

= 5.n (2) (1.96 x lo-') 
(1.24 x 10) (9.72 x 

AT1 = 840 - 70 = 770 

Therefore, using Equation 1-11 

,( = 0.292 f t  = 3 . 5  inches 

This was the length the Teflon compression gland was extended away from the 

anemometer salt bath w a l l .  

I n  order t o  eliminate extraneous conduction heat losses  away from the  ane- 

mometer f in ,  the  heater lead wires and thermocouple wires were made as small 
i n  diameter as pract ical .  Wire of 0.005 in .  diameter was chosen for  both the 

heater leads and thermocouple wires. 
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1 From the  computer results, it was shown t h a t  a heat input of 1.8 x 10- 
BTU/hr or 530 m i l l i w a t t s  was suff ic ient  t o  power the anemometer heater. 

current required t o  power the nichrme f i n  i s  366 milliamps. 
The 

A constant voltage source w a s  used t o  supply t h i s  current. 

probabi l i ty  of resistance change i n  the anemometer f i n  and lead wires as 
the  temperature changes i n  t h e  meter, a 120 ohm w i r e  wound precision r e s i s t o r  

was put i n  series w i t h  t he  anemometer heater element. This increased the  t o t a l  
res is tance of the c i r cu i t  t o  150 ohms. 

Because of the  

Any resis tance change i n  e i ther  the heater or lead w i r e s  is negligible i n  com- 
parison w i t h  the resis tance of the overal l  c i rcu i t .  

of the heater element current. 

This assures the constancy 

2.3.2 Thermocouple Select ion 

The choice of a thermocouple combination f o r  the anemometer was based upon the  

thermocouple e lec t r ica l  output and upon thermocouple location. O f  the  common 
thermocouple combinations, t h e  chromel-constantan junction produces the highest 

mi l l ivo l t  output per degree of temperature change. 

examining the data i n  t h e  following table.  
This may be observed by 

THERMOCOUPLE ELECTRICAL OUTTUTS 

Thermocouple Junction 
.__------ 

Iron Constantan 
Chrome1 dunel  

P l a t  inum-Plat inum 

P l a t  inum- Plat inum 

Tungsten-Tungsten 

w i t h  1% Rhodium 

with 13% Rhodium 

w i t h  26$ Rhenium 
Chr omel- Constant an 
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20.6 
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Because of the  small change i n  anemometer f i n  temperature i n  the  lowest 
portion of the  flow r a t e  range ( i .e . ,  10 

mi l l i vo l t  output from the  couple, the easier it i s  t o  dis t inguish and measure 
these changes. 

-4 t o  gms/sec.), the  higher the  

The thermocouple materials most inert  t o  e i the r  cesium or mercury are the  

refractory metals. 

temper&,ure would generate a 3.72 z i l l i v o l t  output. 
junction, t h i s  same output would be 31.09 mil l ivo l t s .  

Using tungsten-tungsten rhenium as an example, an 800'F 

For a ckromel constantan 

Some thought was given t o  making the anemometer f i n  the  thermocouple i tself ,  
In t h i s  way a closer approximation t o  the average f i n  temperatue could be 

measured. However, during the computer studies,  it was noted t h a t  the loc- 

a l ized  temperature ( for  example, at point 16 i n  Figure 2-6 and 2-7) changed 

i n  the same amount as did the  average f i n  temperature. 

cided t o  spot weld the thermocouples on the  f i n s  of both the  reference and 

heated anemometers. 

Figure 2-17. 

Therefore, it was de- 

"his manner of attachment is shown schematically i n  

The materials selected fo r  thermocouples were chrome1 and constantan because 

of high thermoelectric e f f ec t s  associated with this  material combination. To 
what degree long term vapor exposure w i l l  a l t e r  these e l e c t r i c a l  output char- 
a c t e r i s t i c s  has not been determined. 

flow meter be periodically recalibrated over a several  month period t o  deter-  

mine if any cesium or mercury alloying has occurred and if  t h i s  has changed 

the  e l e c t r i c a l  output character is t ics  of the thermocouples. 

Therefore, it is  suggested t h a t  the vapor 

The f b c t i o n  of the reference or nonheated f i n  was t o  compensate f o r  expected 
temperature var ia t ions i n  vapor as it passed through the  meter. 

out t h i s  reference, a change i n  vapor temperature a s  well as a change i n  vapor 

ve loc i ty  would cause an output variation on the readout equipment and hence 

indicate  a false flow ra t e .  The thermocouple signal of the  reference unit  was  

bucked against the heated anemometer s ignal  a t  zero vapor flow by means of a 

n u l l  balance system. 
cooling resu l t ing  from vapor velocity convection e f fec ts .  

mometer cooling arising from vapor temperature var ia t ion would be duplicated on 
each of the anemometer vanes with the net r e s u l t  t h a t  the meter readout could be 

altered only by vapor veloci ty  variation and not by vapor temperature variation. 

With- 

Any change f rom t h i s  nu l l  output would only be due t o  

The extent of ane- 

A diagram of the nulling system used i n  t h i s  operation is shown as  Figure 2-21. 
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3.0 TECHNICAL DISCUSSION - EXPERIMENTAL INVESTIGATION 

A description of the  t e s t ing  used t o  ca l ibra te  the  anemmeter meter and the  

procedure for  operating the r i g  are presented i n  Appendices A and B of t h i s  

report .  This section contains a discussion of t he  experimentally determined 

operating charac te r i s t ics  of the vapor flow meter and i t s  attendant c i rcu i t ry .  

3 . 1  Calibration Results 

The following r e s u l t s  were obtained from cal ibrat ion experiments with the ane- 
mometer vapor flow meter. 

1. A cal ibrat ion plot  re la t ing microvolt output t o  mercury mass flow 
r a t e  i s  presented i n  Figure 3-1. 

2 .  The zero point of the indicating voltmeter d r i f t ed  from 0 t o  +50 

microvolts during the  course of the cal ibrat ion.  
range of 10 t o  
interpreted as a f a l se  flow rate change of 5 x 10 

From a no flow condition t o  a mercury flow of 2 x 10 

response for  the meter and r i g  t o  indicate an equilibrium flow con- 

d i t i on  was approximately one minute. 

In the  flow rate 
-4 gms/sec., t h i s  magnitude of t h i s  drift could be 

-4 
gms/sec. 
-4 

3 .  gm/sec, the 

3.2  Discussion of Data 

From the plot shown i n  Figure 3-1, the  operating charac te r i s t ics  of the ane- 
mometer vapor flow meter can be observed. Within the flow r a t e  range of 10'" 
t o  2 x lod2 gms/sec. the  anemometer readout first indicated a posi t ive output 

and then a negative output as the  f low rate increased. 
can best  be explained by considering the  s h i f t  i n  the zero point of the in- 

dicat ing system during the  course of the  experiment (shown graphically i n  Figure 

3-1). 
adjusted as t o  supply a zero d i f f e ren t i a l  output from the reference and heated 
anemometer thermocouples. 

the  cold junctions of t he  thermocouples were insulated. Without the  lead shield- 

ing, the voltmeter could not be brought t o  a zero reading within a range of less 
than plus or minus 20 microvolts. Background noise and general. e l e c t r i c a l  in te r -  
ference i n  the  laboratory was sufficient t o  prevent a m o r e  precise nul l ing of 

the  meter. 

This po lar i ty  reversal  

I n i t a l l y ,  with the anemometer heater powered, the nu l l  system was so 

In  doing t h i s ,  all exter ior  leads were shielded, and 
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Flowing Media : Mercury 
Meter Pressure: 0.1 t o r r  
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Figure 3-1 
Vapor Flow Anemometer Calibration Curve 
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I n  the  upper range of the  flow r a t e  ( i . e . ,  5 x lom3 t o  5 x gms/sec.) t h e  

anemometer f i n  temperature changes by one or more Fahrenheit degrees when the 
vapor veloci ty  changes by a unit  factor (e.g., f r o m  4 t o  5 x gms/sec.). 

I n  t h e  low f low range 
change corresponds t o  a f e w  hundredths of a degree temperature change on the 
f i n  and is  equivalent t o  a di f fe ren t ia l  thermocouple output of only a f e w  
microvolts. 

t o  Id3 gm/sec. ) a un i t  factor of mass flow rate 

A change i n  hot junction temperature, cold junction temperature or  a com- 

binat ion of these w i l l  cause a change i n  the  thermocouple output. 
temperature change t o  be sensed produces only a f e w  microvolts, it is  nec- 

essary t h a t  only the hot junction and never the  cold junction should change 
i n  temperature. 

When the  

D u r i n g  the  cal ibrat ion e f f o r t  the  cold junction was insulated with Kaowool. 
However, temperature var ia t ions of a f e w  hundredths of a degree may s t i l l  have 

occurred. This i s  one possible reason for  the observed null point drift. 

A second reason for  the occurrence may be associated with the f i n  heater input 

current. 
only by a s ingle  contact point on the anemometer f i n ,  the heater current should 
increase the thermocouple output due t o  res is tance heating only. However, if 

the  two thermocouple wires a re  separated from each other by a f i n i t e  distance 

a current passing through the  f i n  w i l l  be detected by the voltmeter attached t o  

the thermocouples. 

If the thermocouples (Reference: Figure 2-17, Section 2 )  was attached 

When the anemometer salt bath had attained an equilibrium temperature, 840°F, 

and at  a no flow condition the  output a t  the  heated f i n  thermocouple (pr ior  t o  
bucking it against the reference thermocouple) was 31.2 mil l ivo l t s .  

passing 366 milliamperes of current through the f i n ,  the output immediately in- 
creased t o  p . 8  microvolts, an increase of 1600 microvolts. 

tua t ion  of only ll milliamperes would be suf f ic ien t  t o  change t h i s  imposed 

current output by 50 microvolts. 
could cause a microvolt drift of the n u l l  point on the  readout meter. 
of the readabi l i ty  of the heater CWrent meter a change of several. mi l l imps  
design value of 366 could not be readily detected. 

After 

A current f luc-  

Thus, a small change i n  the f i n  heater current 
Because 
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Nevertheless, a possible variance i n  the heater f i n  input current is  a p a r t i a l  

cause fo r  the observed d r i f t  read on the  output microvolt meter. 

Figure 2-10, Section 2 i s  a theore t ica l  plot  of the  expected anemometer re- 
sponse t o  cesium vapor veloci ty  changes over the design flow range. This data 

w a s  recalculated and plot ted on the  bas i s  of a chromel-constantan thermocouple 

output versus cesium flow ra te .  

perimental data from the  cal ibrat ion e f f o r t  w i t h  mercury. 

Figure 3-2. 

Superimposed on t h i s  same plot  i s  the  ex- 
This i s  shown as 

While it should not be expected that the two s e t s  of data coincide exactly 
with each other, the trends fo r  the two s e t s  of data should be s i m i l a r .  

i s  shown i n  Section 2 where the  convection coeff ic ients  fo r  both cesium and 
mercury (under the same flow conditions) are calculated. 

a re  approximately equal the degree of heat t ransfer  and subsequently the  re -  
sponse character is t ics  of the anemometer should be approximately the same fo r  

both cesium and mercury. 

This 

Since the coeff ic ients  

This trend i s  borne out by the  data i n  Figure 3-2. 
output increases i n  nearly the same proportion a s  does the predicted data. 

Following correction of the nu l l  point sh i f t  the two curves should have even 

more s i m i l a r  character is t ics .  

The anemometer microvolt 

The time response of the vapor flow meter was  t e s t ed  by measuring the time re-  

quired for  the system t o  indicate an equilibrium microvolt output from a no 
flow condition. 

valve w a s  closed and a l l  mercury w a s  removed from the flow system. 

valve w a s  again opened, and the  time in te rva l  t o  reach the same flow rate a 

second time was recorded. From 0 t o  2 x 10 

equilibrium reading was at ta ined about one minute a f t e r  flow began. 

f l o w  r a t e s  t h i s  time should be shorter and a t  lower flow r a t e s  th i s  time 
should be longer. 

t irne . 

A f t e r  a nominal flow had passed through the meter, the  supply 

The supply 

-4 gms/sec. mercury flow ra t e s ,  an 

A t  higher 

This recorded in te rva l  included the meter and r i g  response 
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3.2.1 

One o 

Operating Features of the Anemometer 

the  design objectives of t he  anemometer Lzvelopment e f fo r t  was t o  assure 
t h a t  the  f l o w  meter could be placed i n  the  vapor feed system l ine  of an ion 
engine without interfer ing with the  vapor flat or  operation of t he  feed system. 
This imposes two main r e s t r i c t ions  on the  meter design. 

1. That a very minimal pressure drop occurs across the meter. 

2. That the meter and i t s  attendant c i r cu i t ry  must be so designed 
that they can operate with a several  thousand vol t  applied 

potential  without danger t o  t h e  operator. 

The basic design of the anemometer meets requirement one. 

r e s t r i c t ions  or flow channels i n  the meter configuration, l i n e  loss  would be 
the  only pressure drop encountered by the anemometer design. 

l i n c  loss i s  a direct  function of vapor veloci ty  (which i s  minimal i n  the meter 
design requirements) pressure drop due t o  l i n e  loss w i l l  a l so  be minimal. 

Since there are no 

However, because 

The operation of the  anemometer system i s  not dependent upon the  applied vol t -  

age. The performance character is t ics  shown i n  Figure 3-1 would not be a l t e r ed  

by placing the anemometer i n  a high potent ia l  f i e l d .  
the sensing circui t ,  the readout, temperature controller,  and heater f i n  current 

source should a l l  be suitably modified i n  order t ha t  they can be operated at a 
high e l ec t r i ca l  potent ia l  without being injurious t o  personnel. 

accomplished by heavily isolat ing each of the  uni t s  from ground and sui tably 
modifying the control features i n  order t ha t  they can be operated a t  a distance, 

by means of insulator rods. 
temperature bath regulator and the microvolt meter readout can be modified t o  

incorporate th i s  feature.  

‘nlhile t h i s  i s  true for  

This can eas i ly  be 

A l l  the  control equipment, including the constant 

The vapor flow anemometer i s  designed t o  operate over a pressure range of 0.1 

t o  1 t o r r  f o r  mercury and 1 t o  25 t o r r  for  cesium. In  performing the  calibra- 

t i o n  a t  any one pressure level ,  the  e f fec t  of varying the meter pressure l eve l  

on t,he accuracy of the cal ibrat ion was considered. 
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As shown i n  Section 2, the  varying parameter that the anemometer senses is t he  

convection heat t ransfer  coefficient. This i s  considered in a p lo t  of Nusselt 

number versus Reynolds number (Figure 2-2). 

are :  
The terms i n  the  Nusselt number 

hx NU = 

The number x (charac te r i s t ic  l inear  dimension) and k (thermal conductivity) 
a r e  not pressure dependent. 

The Reynolds number is  expressed as: 

XV P 
P 

Re = - 
The l inea r  velocity 

=  PA or v P = &/A 

(v)  is related t o  the mass veloci ty  by the  expression 

Therefore, the Reynolds number canbe  rewrit ten as 

xil 

Re 'P 
All these terms (the character is t ic  l i n e a r  dimension -- 6, mass f low rate -- 
h, viscos i ty  --+, and f l o w  area -- A )  are not pressure dependent. 

number, l i k e  the  Nusselt number, i s  independent of system pressure. 

The Reynolds 

From t h i s  analysis,  it can be concluded t h a t  a cal ibrat ion made a t  any one 
pressure l eve l  i s  equally applicable over a l l  pressure leve ls  specified i n  

the  design. 
measure the  meter pressure level ,  as  long as it i s  within design specif icat ions.  

To use the flow meter i n  actual  practice,  it i s  not necessary t o  

3.3 Conclusions and Recommendations - 

From t h i s  course of studies,  it was concluded t h a t  the  anemometer vapor flow 
meter, met i n  pr inciple  the design objectives of the contract. The meter 

responded t o  changes in  flow r a t e  over the e n t i r e  specified fiow range. 
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Design calculations showed the meter t o  be equally as applicable t o  cesium as 
t o  mercury. 

i f i e d  by the contract have been experimentally a t ta ined  during meter tes t ing .  

The pressure, temperature, and compatibility requirements spec 

To improve the  meter fur ther  and make it a more r e l i ab le  laboratory instrument, 

there  s t i l l  remains some points of experimental investigation. These are: 

1. The possible changing of anemometer thermocouple composition and 
emf output w i t h  time a f t e r  prolonged exposure t o  cesium 

or  mercury. 

2. Appropriate modification of the null balance c i r cu i t ry  t o  

eliminate the  present d r i f t i n g  tendency of the  anemmeter during 
the course of c d i b r a t i o n .  
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APPENDIX A 
CALIBRATOR RIG AND TEST SYSTEM C0MPONE"S 

The photograph shown a s  Figure A - 1  i s  an overa l l  view of the  anemometer-calibrator 

t e s t  r i g .  

i s  shown i n  Figure 2-18, Section 2) is positioned below the  microvolt meter. 

The anemometer sa l t  bath temperature control  (whose c i r c u i t  diagram 

The power controls f o r  the r i g  and the thermocouple readouts used t o  indicate 
ceq~?er?+,  an4 v q c r  tezpratures are ic the test y u r a  *.-el tc the left of the 

ca l ibra tor  r i g .  

A close up of the  vapor flow meter i t s e l f ,  properly positioned i n  the  t e s t  r i g  
without the  insulation in  place, i s  shown as Figure A-2. The meter is designed 

t o  be used in  a v e r t i c a l  posit ion with the  reference anemometer f i n  upstream of 
the heated anemometer f i n .  

Figure A-3  is  a p i c t o r i a l  drawing of the cal ibrat ion system depicting the  loca- 

t i o n  of each of the thermocouples i n  t he  system. The temperature indicators a r e  

pos it ioned as : 

1. 

2. 

3 *  
4. 
5 .  
6 .  
7 .  
a. 
9 .  
10. 

11. 
12. 

13 
14. 
15. 
16. 
17. 

Lower salt bath temperature a t  bo i le r .  
Upper sal t  bath temperature a t  bo i le r .  

Boiler vapor temperature. 

Vapor temperature a t  boi ler  e x i t  and superheater entrance. 
Lower sal t  bath temperature a t  superheater. 

Upper sal t  bath temperature a t  superheater. 

Vapor temperature a t  entrance t o  o r i f i ce .  

Lower salt  bath temperature a t  desuperheater . 
Upper sal t  bath temperature a t  desuperheater. 

Vapor temperature a t  entrance t o  meter. 

Meter salt bath temperature, 

Lower o i l  bath temperature a t  condenser. 

Middle o i l  bath temperature a t  condenser, 

Upper o i l  bath temperature a t  condenser. 

Vapor temperature a t  top of condenser, 

Vapor temperature a t  bottom of condenser. 

Condenser i n l e t  surface temperature. 

A - 1  
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A l l  components were made from type 316 o r  347 s t a in l e s s  s t e e l .  

were accomplished wi th  Swagelok tubing f i t t i n g s .  

couple select ion.  A l l  valves i n  the  system t h a t  experienced l iquid metals above 

300°F were bellows sealed needle valves. 

regulating valves. 

Connections 

Iron-constantan was the thermo- 

A l l  other valves were Teflon packed 

Pictures of the individual components that  made up the system a r e  shown i n  

Figures A-4 ,  A-5  and A - 6 .  
A - 4  were used f o r  powering each of the components. 

Watlow immersions heaters such as shown i n  Figure 

A - 5  
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APPENDIX B 

CALIBRATOR R I G  OPERATION 

Two o r i f i ce s  were designed and bui l t  f o r  the  ca l ibra tor  r i g .  

(0.016 inches diameter) is intended f o r  use over t he  e n t i r e  flow rate range 

The smaller one 

t o  5 x gms/sec) with mercury and over the  t o  4 x gms/sec 

t o  5 x lom2 gms/sec. 

range with cesium. 

f o r  use with cesium over the mass flow range of 4 x 
Details of how these o r i f i ce  diameters were chosen and over w h a t  flow rate 

ranges they were t o  be used i s  discussed i n  Appendix C of t h i s  report .  

The la rger  or i f ice  (0.0440 inches i n  diameter) is intended 

Figures B-1 through B-4 a r e  mercury and cesium ca l ibra t ion  curves f o r  each of 

the two o r i f i ce s .  

f o r  taking the  data is presented i n  d e t a i l  i n  Appendix D of t h i s  report .  

The manner i n  which the  curves were plot ted and the  procedure 

The operation procedure of the  cal ibrator  r i g  w i l l  be explained f o r  use with 
mercury. However, t he  same procedure is a l s o  applicable with cesium. Because 
of t he  required meter pressure operation ranges (0.1 t o  25 t o r r )  the condenser 

temperatures necessary t o  obtain these pressures range from 180 t o  8 0 0 0 ~ .  For 
mercury operation, t he  condenser temperature range is  from 180 t o  250°F. 

cesium, t h i s  range is from 500 t o  8 0 0 0 ~ .  
condenser temperature l eve l  versus system operating pressure f o r  both mercury 

and cesium flow conditions are shown in  Figures B-5 and B-6. 

For 
Plots  of experimental data showing 

During mercury operation the  condenser is  t o  be f i l l e d  with a high temperature 

o i l .  A su i tab le  sa l t  i s  t o  be used f o r  cesium t e s t s .  

System Operation Procedure 

F i l l i n g  of Condenser 

1. F i l l  bo i le r  with 100-150 cc of Hg; evacuate t o  50 microns o r  less, and 
close boi le r  valves. 

2. Evacuate en t i r e  calibrator r i g  t o  50 microns o r  l e s s  pressure leve l .  

3 .  Close condenser valve and condenser leg  valve between col lector  and 

condenser. 

Add 600 cc of Hg t o  collector.  4. 
5. Evacuate col lector  t o  50 microns o r  l e s s  pressure leve l .  

B- 1 
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6. Open condenser valve. 

7. Pressurize col lector  with suf f ic ien t  argon or a i r  pressure t o  elevate 
a column of mercury one inch above the  height of t he  condenser leg.  

(This i s  approximately 23 inches). 

Note: 
8. Close condenser valve. 

9. Drain excess of mercury out of col lector .  

For cesium operation only argon can be used. 

10. Evacuate col lector  t o  50 microns o r  less pressure level .  

11. Open condenser leg  valve and drain excess mercury from condenser i n to  

collector. 

Close condenser leg  valve, remove mercury from col lector  and evacuate 

collector t o  50 microns or  less pressure leve l .  
12. 

13. Open condenser leg valve. The remaining mercury, about 240 cc, should 
s tay  i n  condenser and not be drained through the condenser leg.  

r i g  operation the  condenser leg valve should always be open and t h e  

condenser valve should always be closed. The condenser valve is  only 

t o  be opened a t  the  end of tes t  t o  empty the  condenser. 

During 

Component Temperature Sett ings 

The following temperature levels a r e  t o  be maintained a t  each of the  r i g  

components: 

1. Boiler - The vapor flow r a t e  i s  maintained by the  boi ler  vapor temper- 

a ture  (thermocouple No. 3 ) .  This temperature magnitude may range from 

300 t o  1000°F, depending upon the flow media, o r i f i ce  diameter in  

system, and desired flow ra tes .  Reference is made t o  Figures B-1 

through B-4 f o r  the  correlation between vapor temperature and cesium 

or  mercury flow ra t e .  

Superheater - Average temperature of 840°F (average of thermocouples 

5 and 6) for  mercury. 
Desuperheater - Average temperature of 840°F (average of thermocouples 

8 and 9 )  f o r  mercury and cesium. 

Anemometer - 840°F (thermocouple No. 11). 

tained by t he  s a l t  bath control ler .  Coarse and f ine  adjustments of 

t h i s  unit i s  controlled w i t h  the  indicated r e s i s to r s  on the  back of 

the unit .  The f ine  adjustment is turned counterclockwise u n t i l  the 

2. 
For cesium t h i s  temperature w i l l  be 1000°F. 

3 .  

4. This temperature is  main- 
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s l i p  clutch no longer engages the resistor mechanism. 
couple No. XI. reaches 840°F, t h e  coarse adjustment i s  turned counter- 
clockwise unt i l  the heater-on l i g h t  (white l i g h t )  goes off .  The fine 
adjustment is then turned clockwise unt i l  t he  heater-on l i g h t  turns on 
again. 

during the cal ibrat ion run. 

When thermo- 

The control ler  i s  now s e t  and should need no fur ther  adjustments 

5. Condenser In l e t  - 8 0 0 0 ~  

6. Condenser - The meter pressure is controlled by the condenser temper- 

a ture .  The average reading of thermocouples 15 and 16 should be 
interpreted as the condenser temperature. Reference is made t o  Figures 

B-5 and B-6 f o r  the exact, condenser temperature l e v e l  f o r  the flowing 

vapor and the desired meter pressure. 

The coaponents should be allowed t o  reach equilibrium temperatures before 

ca l ibra t ion  t e s t s  begin. Temperatures should be recorded a t  every half' 

hour in te rva l  during the warm-up times. 

Anemometer Preparation 

Once the anemometer salt bath has a t ta ined an equilibrium temperature the 
following procedure should be taken i n  preparing the anemometer f o r  cal ibra-  

t ion. 

1. Check the e l e c t r i c a l  continuity of the  thermocouples on both the 

reference and heated anemometer f i n s ,  and the heated leads.  These 

a r e  the most f r a g i l e  assemblies i n  the t e s t  system. 

With a constant current source, supply 0.366 amps (DC) t o  the 

anemometer f i n .  
2. 

3 .  Connect the anemometer thermocouples, n u l l  balance system, and indi-  
cating microvoltmeter as shown i n  Figure 2-21. 

Balance these two thermocouple outputs u n t i l  a 0 microvolt s igna l  

is at ta ined.  
4. 

The meter i s  now ready f o r  calibration. 

system should be made during the reminder  of the t e s t .  

No fu r the r  adjustment of tne n u l l  

B-9 



Calibration Procedure 

Following attainment of component temperature equilibrium and nulling of 

anemometer thermocouple outputs, the following procedure is used t o  ca l ibra te  

the  meter. 

1. Open the boi ler  valve. 
2. Record microvolt output as a function of time a t  the  desired flow r a t e .  

Care should be taken t o  keep boi ler  temperature constant -- preferably 

f o r  a half-hour time period a t  any one flow r a t e .  

Change boiler temperature t o  other levels and repeat s t e p  2. 

cal ibrat ion procedure should be repeated f o r  a t  l e a s t  4 t o  6 points 

over the prescribed flow ra t e  range. 

3 .  This 

B- 10 
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APPENDIX C 
CALIBRATION R I G  DESIGN 

Introduction 

One method considered fo r  calibrating the vapor flow meter involved a condensing 

calorimeter. This instrument would sense the  heat of condensation of the  vapors 

and r e l a t e  t h i s  t o  flow r a t e ,  The d i f f i cu l ty  i n  applying t h i s  concept t o  the 

flow meter system arises from t h e  wide ranges of condensation heat  that must be 

sensed by the  instrument. The heat loads vary from 0.115 BTU/hr (corresponding 

t o  the l o w  mercury flow r a t e )  t o  108.4 BTv/hr f o r  the  high cesium flow rate, 

This is a condenser load var ia t ion of approximately 1000 t o  1. Since one calor- 

imeter is not su f f i c i en t ly  sensit ive over t h i s  en t i r e  heat load range the f o l -  

lowing design parameters were chosen t o  determine the exact number of calorimeters 
required f o r  t h i s  application: 

1. The heat l o s s  t o  the  ambient was t o  be a mximum of 1/10 of the 
measured condensation heat. 

The heat l o s s  t o  the  ambient was t o  be 1/2 per cent of t he  maximum 

measurable condensation heat. 
2. 

This resulted i n  a need f o r  three calorimeters t o  cover the  required flow range. 

The d i f f i c u l t y  expected i n  accurately ca l ibra t ing  these calorimeters (especial ly  

the s m l l e s t  one) plus some re l i ab i l i t y  problems tha t  may be experienced wi th  

the thermopile sensing elements, resulted i n  f'urther searches f o r  other cal ibra-  

t i o n  systems. 

A modification of the above mentioned calorimeter was considered whereby the 

en t i r e  heat load range could be sensed using one instrument. This required 

changing the condensing media as the flow r a t e  range changes. This concept was 

a l s o  abandoned f o r  the  same reasons considered with the  three individual calor- 

imeters. 

Another possible method of meter calibration was volume accumulation. 
using the lowest flow rates as an exan@le it would take 158 seconds t o  accumulate 

a one inch buildup i n  a 0.003 inch diameter tube. A small change i n  condenser 

l iqu id  hold-up would r e su l t  i n  a large ca l ibra t ion  e r ror .  Therefore, t h i s  idea 

was a l s o  abandoned. 

However, 
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The only approach which had no serious l imitat ions t o  it, was a choked o r i f i ce .  

This could be calibrated with argon a t  o r  near design flow and the  resul ts  extra- 
polated from t h e  cal ibrat ion temperature t o  the  operating temperature of the  

meter. 

In using t h i s  or i f ice  flow system a boi ler  thermocouple w i l l  sense saturat ion 
temperature and indicate the  o r i f i ce  supply pressure. The superheater w i l l  help 

prevent l iqu id  carry-over through the  o r i f i ce .  
vapor temperature t o  the  required 840°F. 

condenser. The prime disadvantage t o  the  o r i f i ce  system l i e s  i n  the ca l ibra t ion  

techniques. 

bration cannot be used. In  i t s  place, cal ibrat ion must be accomplished with a 

d i f fe ren t  f l u i d ,  and then the  r e su l t s  extrapolated t o  predict  e i t h e r  cesium or  

mercury flow data. 

A desuperheater w i l l  bring the  
Meter pressure l eve l  i s  fixed by the  

For the specified flow rates, col lect ion methods f o r  o r i f i ce  C a l i -  

A schematic drawing of t h i s  system is  presented as Figure C - 1 .  

O r i f  ice Design Calculations 

The flow equation f o r  a choked o r i f i ce  can be wri t ten as: 

/ k + l  
k - 1  

(A) (+ c$> 

where 

G = flow rate, lb/sec. 

g = dimensional constant, 32.2 l b  f t / l b f t  sec 2 
m 

R = gas constant, lbf f t / lbm OF 

k = C / C  

C 

Cv = specific heat a t  constant volume, BTU/lb O F  

2 I. 

T = absolute temperature of gas, OR 

P V  
= specific heat a t  constant pressure, BTU/lb OF 

P 

= absolute or i f ice  upstream pressure, l b / f t  

CD = or i f ice  coeff ic ient  

A = th roa t  area of o r i f i ce ,  f t  2 
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All the  properties f o r  the  vapors (both mercury and cesium) were taken from 
Report No. WADD TR 61-96. 

For cesium equation (C-1) can be wri t ten as 

1.23 PCDA * l i -  cs - 

and f o r  mercury 

1.49 PCDA 
(c -3  1 

Assume the  average temperature across the o r i f i c e  is  900°F (or  13600~) and 
cD= 0.84 (1) . 

Equations (C-2) and ((2-3) can be rewrit ten as: 

2 fi = 0.192 PD 
cs 

and 

%g = 0.233 PD2 

where 

fi = flow rate,  gm/sec. 

P = upstream o r i f i ce  pressure, torr 
D = o r i f i c e  diameter, in .  

A p lo t  of these equations f o r  d i f fe ren t  o r i f i c e  diameters is  presented as Figure 

C-2. On the  same curve the specified meter pressure l i nes  a re  a l s o  drawn. By 
dividing the  meter pressure by the required pressure r a t i o  f o r  a choked o r i f i c e  e he system opersting pressures must exceed or be t o  the r igh t  of t h i s  minimum 

supply pressure l i n e .  

2/k + 1 k@ - 1, l i n e s  of minimum supply pressure can be drawn. In  each case, 

Because the  minimum supply pressure f o r  cesium a r e  of greater  magnitude than the  
minimum supply pressures f o r  mercury, the o r i f i c e  design for the  cesium flow 

system i s  the  controll ing fac tor  f o r  t he  system o r i f i ce  spec i f ica t ions .  

Shapiro, A .  H., "The Dynamics and Thermodynamics of Compressible Fluid Flow", 
Ronald Press Company, p.  100, New York, New York, 1953. 
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To use Figure C-2 a s  a design scale  consider a system i n  which one o r i f i ce  would 

be used t o  cover t h e  en t i r e  flow range ( i . e . ,  from 5 x 
A l i n e  is drawn pa ra l l e l  t o  the constant o r i f i ce  diameter l i ne  u n t i l  it in te r -  

sec ts  the minimum supply pressure a t  the  minimum flow rate. 
maximum boi le r  supply pressure (corresponding t o  the  l i n e  intersect ion a t  t he  

mximum flow rate)  i s  approximately 1000 t o r r ,  
temperature of 1310°F. Because t h i s  i s  not a p rac t i ca l  operating temperature 

more than one or i f ice  must be used t o  cover the en t i r e  cesium flow range. If 

two o r i f i ce s  a re  used the maximum supply pressure can be reduced t o  135 t o r r  

or a supply temperature of 9 8 0 0 ~ .  These o r i f i ce  diameters a r e  0.0440 and 0.0160 

inches respectively. The la rger  o r i f i ce  covers the cesium flow range from 

5 x gms/sec t o  4 x gms/sec. The s m l l e r  o r i f i ce  covers the cesium 
range from 4 x 10-3 gms/sec t o  10 

t o  gms/sec). 

For cesium the  

This represents a boiling 

-4 gms/sec. 

These o r i f i ce  configurations f o r  mercury operation r e su l t s  i n  a range of supply 

pressures of 116 t o r r  (or a saturat ion temperature of 515°F) t o  1.75 t o r r  ( o r  
a saturat ion temperature of 281°F). 

When considering the o r i f i ce  system, the following points a r i s e :  

1. 

2.  

3 .  

The high cesium vapor flow ra t e  is  generated a t  9 8 0 0 ~  and then super- 
heated somewhat above t h i s  temperature t o  assure no l iquid carryover 

through the o r i f i c e ,  
the operating l ines  on Figure C - 2 ,  experienced flow conditions w i l l  be 

somewhat d i f fe ren t  from those predicted from the graph. 

The Knudsen number a t  the sml l  diameter o r i f i ce  indicated t h a t  s l i p  
flow may ex is t  a t  the low mercury flow r a t e .  The exact e f f ec t  of 
t h i s  i s  not readi ly  apparent. However, if ca l ibra t ion  i s  conducted 

a t  the same Knudsen number, any discrepancy a r i s ing  from s l i p  flow 

conditions w i l l  not be apparent i n  the f i n a l  t e s t ing  r e su l t s .  

Figure C-3 is a p lo t  taken from Shapiro of the  sharp edged o r i f i ce  
discharge coeff ic ient  versus the pressure r a t i o .  A s  t h i s  r a t i o  

approaches 0.4, the value of the coeff ic ient  changes from 0.84 t o  a 

l e s se r  value. The operating l ines  in  Figure C - 2  were plotted under 

the assumption tha t  CD = 0.84 remined constant. 
it is seen tha t  t h i s  i s  not always the  case. However, if the 

Since a 900°F temperature was assumed i n  p lo t t ing  

From the  above p lo t  
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cal ibrat ion is conducted a t  t he  same conditions t h a t  are experienced 
i n  actual meter operation, t h i s  changing value of C 

t he  accuracy of t he  ca l ibra t ion  system. 
should not a l t e r  D 

Boiler Design Calculations 

The bo i l e r  w i l l  be sized f o r  the  mximum volumetric flow (which corresponds t o  

the  high cesium flow rate).  

e ight  hours of continual operat ion. 

Furthermore, it is assumed t h a t  there  w i l l  be 

t v = -  m 
I3 

3 I 
V = Tank volume, i n  

fi = Flow r a t e ,  lbm/hr 

p = Fluid density, lb,/in 3 

t = Flow t i m e ,  h r  

rh = 5 x lo-* gms/sec = 0,397 lbm/hr 

This tank will be sized f o r  a cy l indr ica l  geometry. 
four inches diameter ( D )  by s ix  inches high (h)  

Assume the  diameter t o  be 

A tank of these dimensions was used f o r  the boi le r ,  and was insulated with a 

one inch th ick  layer of Kaowool. 

The heat loss = (c-8) 

Y i l A  T q = -  
AX 

q = r a t e  of heat loss, BTU/hr 

K = thermal conductivity of Kaowool, BTU/hr ft OF 
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A =  

A T  = 

ax = 

K =  

A =  

AT = 

T2 = 

T1 - 
AT = 

A X  = 

- 

' =  

' =  

2 area of heat t ransfer ,  ft 

temperature difference causing heat t ransfer ,  O F  

distance through which heat t ransfer  occurs, f t  

0.030 BTU(2)/hr f t  "F [n(4)7 + (n 4 x 6 )  = 101 i n  2 
2 [$? + n D h = 2  4 

temperature expected on the outside of the Kaowool = 100°F 

980 - 100 - 880°F 

one inch 
(0.030 BTU/hr f t  OF) (101 in2)  (880°F) (12 i n / f t )  

(144 in2/ft2) (1 in.  ) 

221 BTU/hr 

- ( t h i s  assumes sensible heat i s  negligible ) %ota l  - 'latent heat + 'heat loss 

= 108 + 221 = 329 BTU/hr = 96.4 w a t t s  Qtotal 

This power input was obtained using a constant temperature salt bath. 

Condenser Design Calculations 

A condenser is  required not only t o  condense the  vapor which passes through the 

meter but a l so  t o  maintain the specified meter pressure. 

pressure drop from the condenser t o  meter es tabl ishes  the pressure conditions 

within the meter. However, the l ine  pressure drop can be shown t o  be minimal 
fo r  a l l  flow conditions with the  exception of those t h a t  approach s l i p  flow. 
Under continuum conditions, the meter pressure may be considered equal t o  the 

condenser pressure. 

- 

Adding the l i n e  

2, uabcock and Vilcox, Kaowuoi Bulletin E-47 
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For cesium these pressures range from 1 t o  25 t o r r  (corresponding t o  sa tura t ion  

temperatures of 530 t o  7 8 " ~ ) .  

(corresponding t o  saturat ion temperatures of 179 t o  259°F). 

high flash point o i l  is  suggested fo r  the mercury condenser operation. 

cesium is  f lar ing a heat t r e a t  salt i s  t o  be used. 

For mercury the  pressure range is  0.1 t o  1 t o r r  
A heat treat - 

When 

A schematic drawing of the suggested condenser i s  shown in Figure C-4. 
procedure for  operating the numbered valves is  included i n  Appendix B of t h i s  
report .  

The 

The t r a p  and condensate loop is necessary t o  s t a b i l i z e  the condensing in t e r -  

face. The required loop height i s  calculated from the  max- cesium pressure. 

i . e . ,  

P h = -  - - 
P (106 ibm/ft') 

(25 torr)(0.0193 lb/in2 torr)(1728 in 3 3  /ft ) 

h = 7.85 =8 inches 

The temperature difference between the condensing vapor and the bath will be 
established aa 10°F. To estimate the value of the overall heat t r ans fe r  co- 
e f f i c i e n t  (U) for th i s  system, reference was made t o  similer tests using water 
as the condensing media. 
For a conservative design U = 60/3 = 20 BTU/hr f t2  O F  was used. 

Here a value of U = 60 BTU/hr f t2  "F w ~ 6  found (3) . 

To calculate the heat t ransfer  area required for  the condenser the following 

r e l a t ions  were used: 

q = &  x 
and 

q = UADT 

(c-9) 

(c-10) 

h k s ,  L. H., "Mechanical Engineer ' 6  Handbook", F i f th  Edition, M c G r a w - H i l l  
Book Company, New York, New Ymk, 1951. 

C-u. 



where 

q = r a t e  of heat t ransfer ,  BTU/hr 

h = flow rate,  lbm/sec 

= l a t e n t  heat of vaporization, B!l!U/lb 

U = heat transfer coeff ic ient ,  BTU/hr f t 2  "F 

A = heat transfer area, f t  2 

AT = t he  temperature drop from the  condensing bath t o  the  condensing vapors 

Equating equations (C-9) and (C-10) and solving fo r  A leaves 
in 

U A T  
A E- 

For mercury at the high flow r a t e s ,  which requires the  la rges t  area 

( 5  x gm/sec)( 3600 sec/hr)(127 BTU/lb) 
T i - - - -  

A = ---a_ 

(454 gm/lb)(20 BTU/hr ft F)(lO°F) 

2 A = 0.252 f t  

NU = 3.65 = hD/k 

where 

h = heat transfer coefficient,  BTU/hr f t2  OF 

k = vapor thermal conductivity, BTU/hr f t  "F 

D = tube diameter, f t .  

fo r  cesium vapor a t  1080°F, k = 0.00308 BTU/hr f t  OF. 

3.65 k - (3.65)(0.00308 BTU/hr f t  "F)( l2  i n / f t )  
.---- 

( T i n )  
h =-r - --e-- 

h = 0.135 BTU/hr f t 2  OF 

Heat input = q = h C A T 
P 
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(5  x 1 0 - ~ g / s e ~ ) ( 3 6 0 0  sec/hr)(0.0665 BTU/lb "F)(1080 - 980) OF 
454 g/lb 

q = -  

(c-12) 

The equation r e l a t ing  the  heat transfer rate t o  the  superheater area is 

where 

AT, = log mean temperature difference between the  tube and vapor 

temperature 

Assume the vapor and tube temperature p ro f i l e  t o  be as shown below: 

Tube 
1100 "F 

8 Vapor 

If the resis tance of the tube wall is neglected, "U" i n  Equation ( C - 1 3 )  
becomes equal t o  "h" i n  Equation (C-ll). 

2 - = 0.350 f t  A = - - -  9 -  (2.64 BTU/hr) 
hATrn (0.135 BTU/hr f t 2  "F)(55.9 OF) 

Let L = t h e  length of the superheater 

c-13 



The required length will now be checked f o r  the mercury flow system. 

m a x i m u m  flow rate the superheat vapor range is  551 t o  9OO'F. 

For the  

I This cesium superheater length w a s  t h e  s i z e  ac tua l ly  used i n  the  system. 

3.65 k 
D h =  

The temperature d is t r ibu t ion  will be assumed as 

q = 3.45 BTU/hr 

2 A = 0.113 ft 

L = (length of superheater) = A/fiD 

C-14 



I 
I 
I 
1 
I 
I 
I 
I 
I 
1 
II 
I 
I 
1 
I 
I 
1 
1 
1 

TRW ELECTROMECHANICAL DIVISION 

THOMPSON R A M 0  WOOLORIDGE INC 

To calculate  t he  heat input i n to  the superheater, it is assumed t h a t  a one inch 
layer  of Kaowool is used as an  insulation medium, and the  insulat ion outside 

temperature w i l l  be 100°F. 

2nkL T 

i 
%oss = x q  

Where r = the  radius from the center of t he  tube t o  the  outside w a l l  i 

= the  radius from the center of t h e  tube t o  t h e  outside of the  
rc! 

insulation. 

L = 24 inches (or  2 f t )  w i l l  be used f o r  t h i s  calculat ion t o  obtain 

the  maximum heat loss  expected. 

- 2n(0.030 BTU/hr f t  "F)(1080 - 100)F ( 2  f t )  
gloss - Rn (1.5)/(5) 

= 335 BTU/hr = 98.5 watts 910s s 

This is the  maximum heat input t ha t  must be supplied t o  the  superheater t o  have 

it ef fec t ive ly  operate within the  design range. 

Desuperheater Design Calculations 

The purpose of the  desuperheater w i l l  be t o  cool  the  cesium vapor from 1080 t o  

840°F (under some flow conditions), and both cesium and mercury vapors from 900 

t o  840"~ under other flow conditions. 

The maximum temperature drop w i l l  be 1080 - 840°F = 240°F. 
w i l l  be designed f o r  t h i s  requirement. 

The desuperheater 

(c-12) q = i - , c A ~  
P 

5 x gm/sec)(3600 sec/hr)(0.0665 lj"U/lb "F)(240°F) 
9 = (  (454 gm/lb) 

g = 6.34 ETU/hr 

This i s  the  r a t e  of heat loss  t h a t  the desuperheater must accommodate. 

If t h e  heat t r ans fe r  coeff ic ient  ( h )  = 0.135 BTU/hr ft2 "F and a one inch tube 

is used, t he  length of t he  desuperheater (L) is:  

C-15 



L = A / ~ D  

A = Q / & T ~  

or 

L = g/hnT,.D 

To calculate AT,, the following temperature profile w i l l  be assumed. 

/ / / /  / /  / / / / / / /  / / / / / T u b e  
800 "F 

\840"~ 

L =  (6.34 m / h r ) ( l 4 4  in2/ft2) = 17.6 inches 
(0.135 mu/hr ft2 "F)(1238) n (1 in.) 

If e i the r  t h i s  length of the  desuperheater, or the  superheater length is  physi- 

ca l ly  t o o  long t o  handle, the superheat temperature can be lowered from 1 0 8 0 " ~  
t o  1000°F. T h i s  w i l l  r esu l t  i n  a shorter  superheater and desuperheater length. 

Condenser Collection Pot  Design Calculations 

The la rges t  volume t o  be at ta ined reasonably i n  the  condenser would correspond 
to a height of 8 t 1 = 9 inches. 

t h i s  volume corresponds to :  

For a two inch diameter cy l indr ica l  vessel  

,. 

(c-7) 

The tank was a rb i t r a r i l y  made &aur inches i n  diameter and four inc-.es high. 

The volume corresponds to :  

V = n(16)(4)/4 = 50.5 in3 which i s  more than t h a t  ac tua l ly  required. 

c-16 
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Summary of Calibration Rig Design 

This  sect ion of the  report  considers the design of a flow system t o  t e s t  and 

t o  ca l ibra te  the vapor flow meter over a flow range of 5 x 
The pressure range f o r  the cesium system i s  25 t o  1 t o r r  and f o r  the mercury 

system i s  1 t o  0 .1  t o r r .  

-4 t o  10 gm/sec. 

The flow system chosen f o r  t h i s  purpose u t i l i z e s  a pot boi ler ,  superheater, 
o r i f ice ,  desuperheater, and a condenser. For mercury o r i f i c e  with a 0.016G 

inch diameter i s  applicable.  This or i f ice  a s  wel l  as one with a 0.0440 diameter 
i s  required f o r  the cesium t e s t s .  

w i l l  vary from 135 t o r r  t o  1.75 tor r .  
flow system. 

The system pressures (upstream of the o r i f i c e )  

Figure A - 1  is  a schemt ic  diagram of the  

c-17 
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APPENDIX D 

ORIFICE CALIBRATION PROCEDUFU3 

System Requirements 

A system of c r i t i c a l  o r i f i ce s  was selected t o  serve as a means of continuous 

ca l ibra t ion  Por the anemometer vapor flow meter. 

cesium and mercury vapor a t  flow rates ranging from 
gm/'sec a t  temperatures 01" 6 4 0 ~ ~  and pressures r~iigirig f r ~ ~  0.1 t~ 1 t ~ r r  f ~ r  

mercury and 1 t o  25 t o r r  f o r  cesium. 

The o r i f i c e  must xonitor 

gm/sec t o  5 x 

The metering o r i f i ce s  chosen f o r  t h i s  requirement operate with choked flow, 
where the  mass flow r a t e  is  dependent upon the  upstream pressure and temperature. 

The pressure r a t i o  across t h e  or i f ice  must be: 

pdpl 
where PI = 

PD = 

cp = 

cv - 

k -  

- 

kRk - 3 
f -  

(k P 1) 
inlet  or upstream pressure, lbf/f't 2 

discharge o r  downstream pressure, lbf /f't 2 

"d"V 

heat capacity a t  constant pressure, BTU/lb 

heat capacity at constant volume, €TU/lb 

OF m 
O F  m 

For an idea l  gas (which includes cesium and mercury superheated vapor) 

CJCv = 1.67 = k 

and 

PdPI  = 0.485 

The mass flow rate of a gas across an o r i f i ce  designed f o r  choked flow is: 

D-1 



where rh = mass flow rate, lbm/SeC. 

2 g = dimensional constant, 32.2 f t  lbm/l% 8ec 

R = gas constant, Ibf f t / lb ,  OF 

T I absolute gas temperature, "R 

A = or i f ice  area, ft 2 

C,, = or i f ice  discharge coeff ic ient  

With reference t o  Figure C-3,  it may be seen t h a t  the o r i f i c e  coeff ic ient  (C,) 

i s  not a constant number. equal t o ,  or l e s s  than 0.2, the  numerical 

value of C remains essent ia l ly  constant. A s  the  r a t i o  increases from 0.2 t o  
0.485 ( the maximum pressure r a t i o  f o r  a c r i t i c a l  system) the  C D value changes 

approximately 15 per cent. 
experienced i n  t h e  cal ibrat ion system be the  same as those expected i n  the meter 

t e s t  system. 

For P /P D I  
D 

Therefore, it i s  important t h a t  the flow conditions 

Over the en t i r e  mercury flow range the  maximum P D I  /P  r a t i o  is  l e s s  than 0.2; 

therefore,  i n  calibrating the o r i f i ce  it is only necessary t o  maintain the 

pressure r a t i o  at a maximum of 0.2. Detai l  measurements of t h i s  number a r e  not 
necessary. 

Over the  cesium flow range the P /P 
0.2.  

t i on  procedure t o  maintain the same pressure conditions across the o r i f i ce  as 

are expected t o  exist  i n  the meter system. 

r a t i o  w i l l  range from 0.485 t o  l e s s  than D I  
Here the  or i f ice  coeff ic ient  will vary and it is necessary i n  the  cal ibra-  

Calibration Measurements 

Equation (D-2) f o r  mercury can be wri t ten as: 

A 'D 
P Hg 
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P = Mercury vapor pressure at the  o r i f i c e  i n l e t  

= Absolute temperature of the mercury vapor 
Hg 

THg 

For the ca l ibra t ion  procedure, argon was used a s  the tes t  f l u i d .  

f o r  argon is then wri t ten as: 

Equation (D-1) 

5IA = CA E ACD (E-4) 

where the argon symbols here have t h e  same denotation as those indicated f o r  

mercury in  equation (D-3). 

Dividing equation (D-3) by equation (D-4) r e su l t s  in: 

If in  the  ca l ibra t ion  procedure the pressure of the argon is s e t  equal t o  the 

mercury pressure, (i.e., pA = P ~ )  ( D-6 ) 

Equation (D-5) is reduced to:  

OY 

where K = C /C 
H g A  

A similar flow equation relating cesium t o  argon flow rates can also be writ ten as: 

where Pcs = PA 

D-3 

(D-9) 



Evaluation of Constants 

The numerical evaluation of constants presented i n  Equations ( D - 6 )  and D - 7 )  a r e  

evaluated as follows : 

For mercury: 

k = 1.67 

R = 1545/M 

M = gas foraula weight = 201 

R = 1545/x)1 = 7.68 lbf f t / l b m  O F  

CHg = 1.52 

The temperature of the mercury vapor flowing across the orif ice  will be @ + @ O F :  

& =  p-0 = 36 

For argon: 

k = 1.67 

R = 1545/39.9 = 38.8 lbf f t / l b  OF m 

where MA = 39.9 

cA =: 0.659 

D - 4  
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Equation (D-7) is then reduced t o :  

(D-10) 

or 

For cesium: 

k = 1.62 (1) 

Ccs = 1.24 

The temperature of the cesium vapor across the orifice w i l l  be 1 O O O O F  or 1 4 6 0 " R .  

This reduces Equation (D-8) to: 

During the argon calibration test- ,  the gas f l  
and upstream orifice pressure (FA) w i l l  be recor;?ed. 
in the form of: 

rate ($), gas temperature (TA), 

This date w i l l  be plctted 

1 
Data taken from WADD TR 61-96 
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Experimental Procedure 

A schematic diagram of the experimental apparatus is presented i n  Figure D-1. 
A p i c t o r i a l  diagram of t h i s  apparatus is shown as Figure D-2. The following 
procedure was used t o  ca l ibra te  the or i f ice :  

1. In i t i a l ly  valves 5, 4, 3 ,  2, 12, 13, 10, 8 and 7 a re  opened and the  
vacuum pump i s  turned on t o  remove a l l  the  a i r  from the l i nes .  

2. All valves with the exception of No. 4 a re  closed. Valve No. 4 serves 

as a vernier regulator f o r  controll ing argon flow r a t e  from the pres- 

sure tank t o  the  o r i f i ce .  Vapor flow through the o r i f i ce  i s  stopped 
or started by opening or closing valve No. 3 .  

j. The argon supply is  fed in to  the pressure tank by opening valve No. 1. 

The pressure leve l  t o  which the tank is  f i l l e d  is  governed by an t i c i -  

pated upstream and downstream o r i f i ce  pressure leve ls .  

from 135 to r r  upstream pressure t o  0 . 1 t o r r  downstream pressure. 
(Reference Appendix C )  

These w i l l  vary 

The tank pressure must be su f f i c i en t ly  higher than the upstream o r i f i ce  pressure 

so that during the ca l ibra t ion  run the argon pressure supply is not depleted t o  
the  extent that a minims1 pressure difference exists between the  o r i f i ce  i n l e t  and 
argon tank. 
sure would not be mintained and the ca l ibra t ion  experiment would be meaningless. 

If t h i s  was t o  occur a constant veloci ty  and upstream o r i f i c e  pres- 

There is a l s o  a maxinnun pressure l eve l  t o  which the  tank can be f i l l e d .  

flow r a t e  through the system is obtained from the  following expressions. 
The mss 
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ni RT 

V Pi = - 
2 where Pi = i n i t i a l  tank pressure, l b f / f t  

n = i n i t i a l  number of l b  moles of gas present i 

R = gas constant, lbf fb/lbm mole O R  

T t absolute gas temperature, O R  

V = tank volume, f't 3 

and 
nf * Pf = - v 

2 where Pf = final tank pressure, lbf/f% 

n = final number of l b  moles of gas present f 

Pi - pf = (ni - nf) RT/V 

or 

(D-14) 

If this process is carr ied out over a f i n i t e  period of time (t) equation (D-14) 
becomes 

ni - nf (pi - pf)  v 
S G  t "  R T t  

where G I miss flaw rate in l b  moles/unit time. 

where M =: gas foneula weight 

& I: mass flow rate, l b d u n l t  time 

D-9 
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If the  numerical value of Pi -. Pf is small (which m y  occur if there is a large 

quantity of gas i n i t i a l l y  present) the  accuracy of t h i s  measurement, and the  sub- 
sequent accuracy of the  calculated flow rate, w i l l  be considerably reduced. 

fore ,  i n  f i l l i n g  the  argon tank, the  pressure must be between these two discussed 

l i m i t s .  
stream o r i f  ice pressure. 

For each cal ibrat ion run, the  initial quantity of argon m y  have t o  be determined 

experimentally. Valve No. 2 serves as a bleed off out le t ,  t o  help regulate the  

argon tank pressure. 

1 
I 
I 
1 

1 
! 

1 
i 

i 
I 

There- 

The numerical values of these limits is dependent upon the  desired up- 

4. Measure the  argon pressure in the  tank using e i t h e r  the mercury manometer 

o r  the  vacuum f l u i d  momete r .  
1 

Both t e s t  manometers f o r  t h i s  system a re  of the  w e l l  type -- each having one indi- 

eating leg. The mrcury manometer w i l l  operate over a pressure range of 0 t o  2560 
t o r r ,  and the vacuum f l u i d  nrrnometer is applicable over a 0 t o  188 t o r r  range. By 

arranging the proper combination of valves e i t h e r  the  high pressure o r  the  low pres- 

sure manometer can be s e t  t o  read the argon tank pressure, upstream o r i f i c e  pressure, I 
or  downstream orif  ice  pressure. 

5 .  Arrange valve combinations so t h a t  e i the r  the  mercury manometer or  the 

vacuum f lu id  manometer w i l l  indicate upstream o r i f i ce  pressure. 

Open valve 3 ,  and adjust  4 t o  the desired upstream pressure. 6. 

7. Rearrange manometer valve se t t ings  f o r  downstream o r i f i ce  pressure 

indication. 

Adjust valve 5 f o r  proper downstream pressure,  
repeat steps 6, 7, and 8 several  times so t h a t  upstream and downstream 

o r i f  ice pressures are a t  prespecif'ied leve ls ) .  

Close valve 3 ,  and proceed t o  take data in  the  following manner: 

a .  A t  the beginning of the experwent the  pressure l eve l  in  t h e  

argon tank is measured and recorded. 

Valve 3 ,  is opened and the upstream and downstream o r i f i ce  pres- 

sures a re  recorded. 

Make note of gas temperature. 

8 .  (It may be necessary t o  

9. 

b. 

c .  

D-10 
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d. For the  length of the run (which w i l l  t en t a t ive ly  be f o r  f ive  
minutes) valve 4 is continually adjusted so tha t  the  upstream 

o r i f i c e  pressure remains constant during the length of the t e s t .  

A s  long as the downstream pressure is su f f i c i en t ly  low that: 

the c r i t i c a l  flow condition w i l l  remain across the  o r i f i c e  and 
r\m.e+f,.. fn-n\ ..-_ L- ..--A +, ---I-.-?..+- +L- r r u f ~ < - -  ---@a<-:--& 
G \ i u a u r u A r  \u f=/ G a l  UG UUGU v u  Ga.LGuJx&uG ULIG U4.J.AJ.GG GUC.L.L.LGJ.CLlb 

('Dl 

e. A t  the end of the  t e s t  period valve 3 is closed and the  pressure 

l eve l  i n  the argon tank is again recorded. The difference i n  the  

measurements between steps a and e is the  measurement of the mass 

flow. 
Using equations (D-7)  o r  (D-8)  the  mass flow r a t e s  of e i the r  mer- 

cury or  cesium is calculated f o r  the  spec i f ic  o r i f i ce  in  the  t e s t  

system, 

f .  

A graphical presentation of t h i s  data f o r  both mercury and cesium flow ra t e s  i s  

presented i n  Appendix B of t h i s  report. 

Design Calculations f o r  Argon Pressure Tank 

P V = n R T  

2 where P = system pressure, lb f / f t  

3 v = system (tank) volume, ft 

n = number of lb moles of gas present 

R E universal  gas constant 

1.55 x lo3 (lb,/ft2) ft3/"R lb mole 

D-11 



I 4 1 2.77 x loo6 l b  moles of argon/sec 

The system w i l l  be designed t o  de l iver  a 100 t o r r  pressure drop over a ca l ibra t ion  

period of f i v e  minutes. 1 
kt P1 LT the  i n i t i a l  pressure of the  system 

i~ the final pressure of the systen p2 

RT p1 - p2 = (nl - n2) 7 = 1oO t o r r  

nl - n2 - - (2.77 x lom6 lb mles /sec) (5  min)(60 sec/min) 

nl - n2 = 833 x t 8-53 x lb moles 

= (100 torr)(2.78 lb/f't2 t o r r )  p1 - p2 
2 2 P1 - P2 = 2.78 x 10 l b f / f t  

v = (  8.33 x 10'4)(1,55 x 1$)(5.30 x 1021 e 24.7 lo-l 
(2.78 x lo2) 

3 3 3  3 3  V = 2.47 f't3 (1.728 x 10 i n  /ft ) I 4.28 x 10 i n  

The tank w i l l  be designed f o r  a cy l indr ica l  geometry. 

D-12 
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where D = tank diameter 

h = tank height 

Assume D = 16 inches 

4v 
YrD 2 ~ r ( 1 6 ) ~  

4 (4.28 x 10 31 h=-= 

h = 21 inches 

A cyl indrical  tank 16 inches in  diameter by 21 inches high was constructed f o r  

the argon pressure tank vessel. 

A system of c r i t i c a l  o r i f i ce s  has been chosen as  a means of cal ibrat ing the  

heated f i n  anemometer vapor flow meter. 

o r i f i c e  (with a 0.0166 inch diameter) was used. This o r i f i ce  plus one with a 

0.044 inch diameter is required for the cesium flows, 

For the mercury vapor flow range, one 

To use an o r i f i ce  it is necessary that i ts  flow coeff ic ient  be known. 

mental systen using argon gas is  described which w i l l  provide the necessary data 

t o  calculate  t h i s  number. Detail design concepts of the system and experimental 

operating procedures a re  a lso included. 

An experi- 

D-13 
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APPENDIX E 

LIST OF SYMBOIS 

2 A = area, ft 

B 

C = circumference, f t  

= convective heat t ransfer  coefficient,  BTU/hr f t  2 /OF 

C = constant 

= or i f i ce  coeff ic ient  

= specif ic  heat, BTU/Ib/"F 

= specif ic  heat a t  constant volume, BTU/lb/"F 

cD 

cP 

cv 

dW 

d = sphere diameter, f t  

= lead wire diameter, ft 

D = support post diameter, f't 

F = radiat ive view fac tor  

Q 

G = flow rate, lb/sec 

h 

= dimensional constant (32.2 ft  lbm/lbf sec 2 ) 

= heat t ransfer  coefficient,  BTU/hr f t  2 /OF 

h = incremental height, f t  

= radiation heat t ransfer  coefficient,  BTU/hr f t  2 / O F  
hr 

i = current, amps 

k = thermal conductivity, m / h r  f t /"F 

k = compressibility fac tor  

= vapor thermal conductivity, BTU/hr f t /"F 

= anemometer f i n  thermal conductivity, BTU/hr f t / "F  

kf 

k 
P 
k = augport post t h e m 1  c~f i i i i i c t i~ i t j - ,  r t . / h r  f b /  I I a- r S 

= wire thermal conductivity, Bnr/hr f t /"F 
kW 

E-1 



kV 

K 

R. 
L 

6 

M 

n 

Nu 

P 

Pr 

cl 

Q 

Q 

Qgen 

= vapor thermal conductivity, BTU/hr f t / "F  

= thermal conductivity, BTU/hr f t /"F 

= radiation constant, O R 3  

= extension length, f t  

= length, P t  

= mass flow ra te ,  gm/sec o r  lb/sec 

= formula weight 

= moles, lbdlb-molecular weight 

= Nusselt number 

= pressure, lb / f t  

= F'randtl number 

= heat t ransfer  ra te ,  BTu/hr 

= r a d i a l  flux, BTU/hr 

= heat input, EfFU/hr 

= heat generation i n  f in ,  EPU/hr 

2 

E-2 

= heat generation in  wire, BTu/hr 
Qw gen 
r = inside annular radius, f t  

r = outside annular radius, f t  

R = gas constant, f t / " ~  

Re = Reynolds number 

R = f i n  resistance, ohms 

i 

0 

P 
= wire resistance, ohms 

RW 

t = thickness, f t  o r  in .  

t = flow time, hrs  

A t  = temperature change, "F 

T = temperature, OF 
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Tv 

ATm 

U 

f V 

v 
v 
W 

4 

X 

X 

X 

Z 

P 
8 
x 
P 
Pf 
P 
P m  

+ 
d 

= vapor temperature, OF 

= log mean temperature, OF 

= heat t r ans fe r  coefficient, BTU/hr ft 2 /OF 

= vapor velocity, f t / s e c  

= l i nea r  vapor velocity, f t / s ec  

= volume, f t  3 

= anemometer f i n  width, f t  

= mass flow ra te ,  lb-moles/hr 

= charac te r i s t ic  l i nea r  dimension, f t  o r  in.  

= increment anemometer f i n  length, f t  

= heat t r ans fe r  distance, f t  

= anemometer fin thickness, f t  

= thermal expansion coefficient,  O R  -1 

= time, hrs 

= l a t en t  heat, BTU/lb 

= vapor viscosity,  lb/ft /sec 

= vapor viscosity,  lb/ft /sec 

= vapor density, l b / f t  3 

= e l e c t r i c a l  r e s i s t i v i ty ,  ohm-ft 

= Stefan-Boltzman constant (1.73 x BTU/hr f t 2 / " R  4 

= heat f l ux  product, B"W/hr/"F 

E- 3 



TRH/ ELECTROMECHANICAL DIVISION 
THOMPSON R A M 0  WOOLDRlUGE INC 

APPENDIX F 

MPORT DISTRIBUTION LIST FCR CONTRACT NO. NAS3-2515 

NASA Lewis Research Center (1) 
Spacecraft Technology Procurement Sect ion 
21000 Brookpark R o a d  
Cleveland, Ohio 44135 
Attention: John H. DeFord 

NASA Lewis Research Center (1) 
Technology Ut i l iza t ion  Office 
21000 Brookpark Road 
Cleveland, Ohio 44135 
Attention: John Weber 

NASA Marshall Space Flight Center 
Huntsville, Alabana 
Attention : 

(1) 

M-RP-DIR/Dr . E. Stuhlinger 

NASA Headquarters (2) 
FOB-1OB 
600 Independence Avenue, Southwest 
Washington, D. C. 20546 
Attention: RNT/James Lazar 

Commander (1) 
Aeronautical Systems Division 
Wright-Patterson A i r  Force Base, Ohio 
Attention: AFAPL (APIE)/Lt. Robt. Supp 

J e t  Propulsion Laboratory (1 ) 
4800 Oak Grove Drive 
Pasadena, California 
Attention: J. J. Paulson 

Electro-Optical Systems, InC. (2) 
125 North Vinedo Avenue 
Pasadena, California 
Attention: R. C. Speiser 

General Elec t r ic  Company (2) 
Flight Propifisinn TLabnratory 
Cincinnati, Ohio 45215 
Attention: M. L. Brmberg 

F- 1 

Ion Physics Corporation (2) 
Burlington, Massachusetts 
Attention: D r .  S. V. Nablo 

Space Technology Laboratories (2) 
8433 Fallbrook Avenue 
Canoga Park, California 
Attention: D r .  D. Langmuir 

AFi4-L (2) 
WC/Capt. C. F. E l l i s  
Kirtland A i r  Force Base 
New Mexico 

NASA Lewis Research Center (1) 
21000 Brookpark Road 
Cleveland., Ohio 44135 
Attention: Reports Control Office 

North American Aviation, Inc. (1) 
12214 Lakewood Avenue 
Downey, California 
Attention: Technical Information Office 

Department 4096- 314 

NASA Lewis Research Center (2) 
Library 
21000 Brookpark Road 
Cleveland, Ohio 44135 

Aero j e t  -General (2 ) 
Nucleonics Division 
San Ramon, California 
Attention: Mr. J. S. Luce 

Hughes Research Laboratories (2) 
Malibu Canyon Road 
Malibu, California 
Attention: D r .  G. R. Brewer 



NASA Lewis Research Center 
Spacecraft Technology Division 
21000 Brookpark Road 
Cleveland, Ohio 44135 
Attention: J. H. Childs (2)  

R. Hieber (7)  

NASA Sc ien t i f ic  and Technical Information 
Fac i l i t y  
Box 5700 
Bethesda, Maryland 20014 
Attention: NASA Representative RQT-2448 

(6 + 1 Reproducible Master) 

United Aircraf t  Corporation (2 ) 
Res ear ch Lab or at or i e  s 
East Hartford 8, Connecticut 
Attention: R. J. Meyerand, Jr. 

Aerospace Corporation (2 ) 
P. 0. Box 95085 
Los Angeles, California 90045 
Attention: Library Technical Documents 

Group 

NASA L e w i s  Research Center TRW Electromechanical Division (1) 
Electromagnetic Propasion Division Thompson Ramo Wooldridge , Inc . 
21000 Brookpark Road 
Cleveland, Ohio 44135 Cleveland, Ohio 44117 
Attention: W. R.  Mickelsen (1) Attention: R. T. Craig 

23555 Euclid Avenue 

W. Moeckel (2 )  

Westinghouse Astronuclesr Laboratories ( 2 )  
Pittsburgh, Pennsylvania 15234 
Attention: Electr ic  Propulsion Lab. 

M r .  W. H. Szymanowski 

F-2 

1 
I 
I 
I 
1 
I 
1 
I 
I 
1 
I 
I 
1 
I 
I 
8 
I 
1 
I 


